
Universal approximation theorem
In the mathematical theory of artificial neural networks, universal approximation theorems are
results[1][2] that establish the density of an algorithmically generated class of functions within a given
function space of interest. Typically, these results concern the approximation capabilities of the feedforward
architecture on the space of continuous functions between two Euclidean spaces, and the approximation is
with respect to the compact convergence topology.

However, there are also a variety of results between non-Euclidean spaces[3] and other commonly used
architectures and, more generally, algorithmically generated sets of functions, such as the convolutional
neural network (CNN) architecture,[4][5] radial basis-functions,[6] or neural networks with specific
properties.[7] Most universal approximation theorems can be parsed into two classes. The first quantifies the
approximation capabilities of neural networks with an arbitrary number of artificial neurons ("arbitrary
width" case) and the second focuses on the case with an arbitrary number of hidden layers, each containing
a limited number of artificial neurons ("arbitrary depth" case).

Universal approximation theorems imply that neural networks can represent a wide variety of interesting
functions when given appropriate weights. On the other hand, they typically do not provide a construction
for the weights, but merely state that such a construction is possible.
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One of the first versions of the arbitrary width case was proven by George Cybenko in 1989 for sigmoid
activation functions.[8] Kurt Hornik, Maxwell Stinchcombe, and Halbert White showed in 1989 that
multilayer feed-forward networks with as few as one hidden layer are universal approximators.[1] Hornik
also showed in 1991[9] that it is not the specific choice of the activation function but rather the multilayer
feed-forward architecture itself that gives neural networks the potential of being universal approximators.
Moshe Leshno et al in 1993[10] and later Allan Pinkus in 1999[11] showed that the universal approximation
property is equivalent to having a nonpolynomial activation function.

The arbitrary depth case was also studied by a number of authors, such as Zhou Lu et al in 2017,[12] Boris
Hanin and Mark Sellke in 2018,[13] and Patrick Kidger and Terry Lyons in 2020.[14] The result minimal
width per layer was refined in 2020[15][16] for residual networks.
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Several extensions of the theorem exist, such as to discontinuous activation functions,[10] noncompact
domains,[14] certifiable networks,[17] random neural networks,[18] and alternative network architectures
and topologies.[14][19]

The classical form of the universal approximation theorem for arbitrary width and bounded depth is as
follows.[8][9][20][21] It extends[11] the classical results of George Cybenko and Kurt Hornik.

Universal approximation theorem: Let  denote the set of continuous functions
from  to . Let . Note that , so  denotes  applied to
each component of .

Then  is not polynomial if and only if for every , , compact , 
 there exist , , ,  such that

where

Such an  can also be approximated by a network of greater depth by using the same construction for the
first layer and approximating the identity function with later layers.

The 'dual' versions of the theorem consider networks of bounded width and arbitrary depth. A variant of
the universal approximation theorem was proved for the arbitrary depth case by Zhou Lu et al. in 2017.[12]

They showed that networks of width n+4 with ReLU activation functions can approximate any Lebesgue
integrable function on n-dimensional input space with respect to  distance if network depth is allowed to
grow. It was also shown that if the width was less than or equal to n, this general expressive power to
approximate any Lebesgue integrable function was lost. In the same paper[12] it was shown that ReLU
networks with width n+1 were sufficient to approximate any continuous function of n-dimensional input
variables.[22] The following refinement, specifies the optimal minimum width for which such an
approximation is possible and is due to.[23]
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exists a fully-connected ReLU network  of width exactly ,
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Moreover, there exists a function  and some , for which there is no
fully-connected ReLU network of width less than  satisfying the
above approximation bound.

Together, the central result of [14] yields the following universal approximation theorem for networks with
bounded width.

Universal approximation theorem (non-affine activation, arbitrary depth, constrained width).
Let  be a compact subset of . Let  be any non-affine continuous function
which is continuously differentiable at at least one point, with nonzero derivative at that point.
Let  denote the space of feed-forward neural networks with  input neurons, 
output neurons, and an arbitrary number of hidden layers each with  neurons, such
that every hidden neuron has activation function  and every output neuron has the identity as
its activation function, with input layer , and output layer . Then given any  and any 

, there exists  such that

In other words,  is dense in  with respect to the topology of uniform
convergence.

Certain necessary conditions for the bounded width, arbitrary depth case have been established, but there is
still a gap between the known sufficient and necessary conditions.[12][13][24]

Achieving useful universal function approximation on graphs (or rather on graph isomorphism classes) has
been a longstanding problem. The popular graph convolutional neural networks (GCNs or GNNs) can be
made as discriminative as the Weisfeiler–Leman graph isomorphism test.[25] In 2020,[26] a universal
approximation theorem result was established by Brüel-Gabrielsson, showing that graph representation
with certain injective properties is sufficient for universal function approximation on bounded graphs and
restricted universal function approximation on unbounded graphs, with an accompanying #edges
#nodes -runtime method that performed at state of the art on a collection of benchmarks.

Quantum neural networks can be expressed by different mathematical tools for circuital quantum
computers, ranging from quantum perceptron to variational quantum circuits, both based on combinations
of quantum logic gates. Variational quantum circuits are based on a parametric circuit, not involving neural
networks. Instead, the quantum perceptron enables the design of quantum neural network with the same
structure of feed forward neural networks, provided that the threshold behaviour of each node does not
involve the collapse of the quantum state, i.e. no measurement process. In 2022 such measurement-free
building block providing the activation function behaviour for quantum neural networks has been
designed.[27] The quantum circuit returns arbitrary approximation of squashing functions in the interval
from -1 to +1 which is relevant for qubits. Such method to design arbitrary quantum activation functions
enables quantum multi-perceptrons and quantum feed-forward neural networks in general.
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