
Representing images on multiple layers of
abstraction in deep learning[1]

Deep learning
Deep learning (also known as deep structured
learning) is part of a broader family of machine
learning methods based on artificial neural networks
with representation learning. Learning can be
supervised, semi-supervised or unsupervised.[2]

Deep-learning architectures such as deep neural
networks, deep belief networks, deep reinforcement
learning, recurrent neural networks, convolutional
neural networks and Transformers have been applied
to fields including computer vision, speech
recognition, natural language processing, machine
translation, bioinformatics, drug design, medical image
analysis, climate science, material inspection and board
game programs, where they have produced results
comparable to and in some cases surpassing human
expert performance.[3][4][5]

Artificial neural networks (ANNs) were inspired by information processing and distributed communication
nodes in biological systems. ANNs have various differences from biological brains. Specifically, artificial
neural networks tend to be static and symbolic, while the biological brain of most living organisms is
dynamic (plastic) and analogue.[6][7]

The adjective "deep" in deep learning refers to the use of multiple layers in the network. Early work
showed that a linear perceptron cannot be a universal classifier, but that a network with a nonpolynomial
activation function with one hidden layer of unbounded width can. Deep learning is a modern variation
which is concerned with an unbounded number of layers of bounded size, which permits practical
application and optimized implementation, while retaining theoretical universality under mild conditions. In
deep learning the layers are also permitted to be heterogeneous and to deviate widely from biologically
informed connectionist models, for the sake of efficiency, trainability and understandability, whence the
"structured" part.
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Deep learning is a class of machine learning algorithms that[8]: 199–200  uses multiple layers to progressively
extract higher-level features from the raw input. For example, in image processing, lower layers may
identify edges, while higher layers may identify the concepts relevant to a human such as digits or letters or
faces.

Most modern deep learning models are based on artificial neural networks, specifically convolutional neural
networks (CNN)s, although they can also include propositional formulas or latent variables organized
layer-wise in deep generative models such as the nodes in deep belief networks and deep Boltzmann
machines.[9]

In deep learning, each level learns to transform its input data into a slightly more abstract and composite
representation. In an image recognition application, the raw input may be a matrix of pixels; the first
representational layer may abstract the pixels and encode edges; the second layer may compose and encode
arrangements of edges; the third layer may encode a nose and eyes; and the fourth layer may recognize that
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the image contains a face. Importantly, a deep learning process can learn which features to optimally place
in which level on its own. This does not eliminate the need for hand-tuning; for example, varying numbers
of layers and layer sizes can provide different degrees of abstraction.[10][11]

The word "deep" in "deep learning" refers to the number of layers through which the data is transformed.
More precisely, deep learning systems have a substantial credit assignment path (CAP) depth. The CAP is
the chain of transformations from input to output. CAPs describe potentially causal connections between
input and output. For a feedforward neural network, the depth of the CAPs is that of the network and is the
number of hidden layers plus one (as the output layer is also parameterized). For recurrent neural networks,
in which a signal may propagate through a layer more than once, the CAP depth is potentially
unlimited.[12] No universally agreed-upon threshold of depth divides shallow learning from deep learning,
but most researchers agree that deep learning involves CAP depth higher than 2. CAP of depth 2 has been
shown to be a universal approximator in the sense that it can emulate any function.[13] Beyond that, more
layers do not add to the function approximator ability of the network. Deep models (CAP > 2) are able to
extract better features than shallow models and hence, extra layers help in learning the features effectively.

Deep learning architectures can be constructed with a greedy layer-by-layer method.[14] Deep learning
helps to disentangle these abstractions and pick out which features improve performance.[10]

For supervised learning tasks, deep learning methods eliminate feature engineering, by translating the data
into compact intermediate representations akin to principal components, and derive layered structures that
remove redundancy in representation.

Deep learning algorithms can be applied to unsupervised learning tasks. This is an important benefit
because unlabeled data are more abundant than the labeled data. Examples of deep structures that can be
trained in an unsupervised manner are deep belief networks.[10][15]

Deep neural networks are generally interpreted in terms of the universal approximation
theorem[16][17][18][19][20] or probabilistic inference.[8][10][12][21]

The classic universal approximation theorem concerns the capacity of feedforward neural networks with a
single hidden layer of finite size to approximate continuous functions.[16][17][18][19] In 1989, the first proof
was published by George Cybenko for sigmoid activation functions[16] and was generalised to feed-
forward multi-layer architectures in 1991 by Kurt Hornik.[17] Recent work also showed that universal
approximation also holds for non-bounded activation functions such as the rectified linear unit.[22]

The universal approximation theorem for deep neural networks concerns the capacity of networks with
bounded width but the depth is allowed to grow. Lu et al.[20] proved that if the width of a deep neural
network with ReLU activation is strictly larger than the input dimension, then the network can approximate
any Lebesgue integrable function; If the width is smaller or equal to the input dimension, then a deep neural
network is not a universal approximator.

The probabilistic interpretation[21] derives from the field of machine learning. It features
inference,[8][9][10][12][15][21] as well as the optimization concepts of training and testing, related to fitting
and generalization, respectively. More specifically, the probabilistic interpretation considers the activation
nonlinearity as a cumulative distribution function.[21] The probabilistic interpretation led to the introduction
of dropout as regularizer in neural networks. The probabilistic interpretation was introduced by researchers
including Hopfield, Widrow and Narendra and popularized in surveys such as the one by Bishop.[23]
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Some sources point out that Frank Rosenblatt developed and explored all of the basic ingredients of the
deep learning systems of today.[24] He described it in his book "Principles of Neurodynamics: Perceptrons
and the Theory of Brain Mechanisms", published by Cornell Aeronautical Laboratory, Inc., Cornell
University in 1962.

The first general, working learning algorithm for supervised, deep, feedforward, multilayer perceptrons was
published by Alexey Ivakhnenko and Lapa in 1967.[25] A 1971 paper described a deep network with eight
layers trained by the group method of data handling.[26] Other deep learning working architectures,
specifically those built for computer vision, began with the Neocognitron introduced by Kunihiko
Fukushima in 1980.[27]

The term Deep Learning was introduced to the machine learning community by Rina Dechter in 1986,[28]

and to artificial neural networks by Igor Aizenberg and colleagues in 2000, in the context of Boolean
threshold neurons.[29][30]

In 1989, Yann LeCun et al. applied the standard backpropagation algorithm, which had been around as the
reverse mode of automatic differentiation since 1970,[31][32][33][34] to a deep neural network with the
purpose of recognizing handwritten ZIP codes on mail. While the algorithm worked, training required 3
days.[35]

In 1994, André de Carvalho, together with Mike Fairhurst and David Bisset, published experimental results
of a multi-layer boolean neural network, also known as a weightless neural network, composed of a 3-
layers self-organising feature extraction neural network module (SOFT) followed by a multi-layer
classification neural network module (GSN), which were independently trained. Each layer in the feature
extraction module extracted features with growing complexity regarding the previous layer.[36]

In 1995, Brendan Frey demonstrated that it was possible to train (over two days) a network containing six
fully connected layers and several hundred hidden units using the wake-sleep algorithm, co-developed with
Peter Dayan and Hinton.[37] Many factors contribute to the slow speed, including the vanishing gradient
problem analyzed in 1991 by Sepp Hochreiter.[38][39]

Since 1997, Sven Behnke extended the feed-forward hierarchical convolutional approach in the Neural
Abstraction Pyramid[40] by lateral and backward connections in order to flexibly incorporate context into
decisions and iteratively resolve local ambiguities.

Simpler models that use task-specific handcrafted features such as Gabor filters and support vector
machines (SVMs) were a popular choice in the 1990s and 2000s, because of artificial neural network's
(ANN) computational cost and a lack of understanding of how the brain wires its biological networks.

Both shallow and deep learning (e.g., recurrent nets) of ANNs have been explored for many
years.[41][42][43] These methods never outperformed non-uniform internal-handcrafting Gaussian mixture
model/Hidden Markov model (GMM-HMM) technology based on generative models of speech trained
discriminatively.[44] Key difficulties have been analyzed, including gradient diminishing[38] and weak
temporal correlation structure in neural predictive models.[45][46] Additional difficulties were the lack of
training data and limited computing power.

Most speech recognition researchers moved away from neural nets to pursue generative modeling. An
exception was at SRI International in the late 1990s. Funded by the US government's NSA and DARPA,
SRI studied deep neural networks in speech and speaker recognition. The speaker recognition team led by
Larry Heck reported significant success with deep neural networks in speech processing in the 1998
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National Institute of Standards and Technology Speaker Recognition evaluation.[47] The SRI deep neural
network was then deployed in the Nuance Verifier, representing the first major industrial application of
deep learning.[48]

The principle of elevating "raw" features over hand-crafted optimization was first explored successfully in
the architecture of deep autoencoder on the "raw" spectrogram or linear filter-bank features in the late
1990s,[48] showing its superiority over the Mel-Cepstral features that contain stages of fixed transformation
from spectrograms. The raw features of speech, waveforms, later produced excellent larger-scale results.[49]

Many aspects of speech recognition were taken over by a deep learning method called long short-term
memory (LSTM), a recurrent neural network published by Hochreiter and Schmidhuber in 1997.[50]

LSTM RNNs avoid the vanishing gradient problem and can learn "Very Deep Learning" tasks[12] that
require memories of events that happened thousands of discrete time steps before, which is important for
speech. In 2003, LSTM started to become competitive with traditional speech recognizers on certain
tasks.[51] Later it was combined with connectionist temporal classification (CTC)[52] in stacks of LSTM
RNNs.[53] In 2015, Google's speech recognition reportedly experienced a dramatic performance jump of
49% through CTC-trained LSTM, which they made available through Google Voice Search.[54]

In 2006, publications by Geoff Hinton, Ruslan Salakhutdinov, Osindero and Teh[55][56][57] showed how a
many-layered feedforward neural network could be effectively pre-trained one layer at a time, treating each
layer in turn as an unsupervised restricted Boltzmann machine, then fine-tuning it using supervised
backpropagation.[58] The papers referred to learning for deep belief nets.

Deep learning is part of state-of-the-art systems in various disciplines, particularly computer vision and
automatic speech recognition (ASR). Results on commonly used evaluation sets such as TIMIT (ASR) and
MNIST (image classification), as well as a range of large-vocabulary speech recognition tasks have steadily
improved.[59][60] Convolutional neural networks (CNNs) were superseded for ASR by CTC[52] for
LSTM.[50][54][61][62][63] but are more successful in computer vision.

The impact of deep learning in industry began in the early 2000s, when CNNs already processed an
estimated 10% to 20% of all the checks written in the US, according to Yann LeCun.[64] Industrial
applications of deep learning to large-scale speech recognition started around 2010.

The 2009 NIPS Workshop on Deep Learning for Speech Recognition was motivated by the limitations of
deep generative models of speech, and the possibility that given more capable hardware and large-scale
data sets that deep neural nets (DNN) might become practical. It was believed that pre-training DNNs using
generative models of deep belief nets (DBN) would overcome the main difficulties of neural nets.
However, it was discovered that replacing pre-training with large amounts of training data for
straightforward backpropagation when using DNNs with large, context-dependent output layers produced
error rates dramatically lower than then-state-of-the-art Gaussian mixture model (GMM)/Hidden Markov
Model (HMM) and also than more-advanced generative model-based systems.[59] The nature of the
recognition errors produced by the two types of systems was characteristically different,[65] offering
technical insights into how to integrate deep learning into the existing highly efficient, run-time speech
decoding system deployed by all major speech recognition systems.[8][66][67] Analysis around 2009–2010,
contrasting the GMM (and other generative speech models) vs. DNN models, stimulated early industrial
investment in deep learning for speech recognition,[65] eventually leading to pervasive and dominant use in
that industry. That analysis was done with comparable performance (less than 1.5% in error rate) between
discriminative DNNs and generative models.[59][65][68]

In 2010, researchers extended deep learning from TIMIT to large vocabulary speech recognition, by
adopting large output layers of the DNN based on context-dependent HMM states constructed by decision
trees.[69][70][71][66]
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How deep learning is a subset of
machine learning and how machine
learning is a subset of artificial
intelligence (AI)

Advances in hardware have driven renewed interest in deep learning. In 2009, Nvidia was involved in
what was called the “big bang” of deep learning, “as deep-learning neural networks were trained with
Nvidia graphics processing units (GPUs).”[72] That year, Andrew Ng determined that GPUs could increase
the speed of deep-learning systems by about 100 times.[73] In particular, GPUs are well-suited for the
matrix/vector computations involved in machine learning.[74][75][76] GPUs speed up training algorithms by
orders of magnitude, reducing running times from weeks to days.[77][78] Further, specialized hardware and
algorithm optimizations can be used for efficient processing of deep learning models.[79]

In 2012, a team led by George E. Dahl won the "Merck Molecular
Activity Challenge" using multi-task deep neural networks to
predict the biomolecular target of one drug.[80][81] In 2014,
Hochreiter's group used deep learning to detect off-target and toxic
effects of environmental chemicals in nutrients, household products
and drugs and won the "Tox21 Data Challenge" of NIH, FDA and
NCATS.[82][83][84]

Significant additional impacts in image or object recognition were
felt from 2011 to 2012. Although CNNs trained by
backpropagation had been around for decades, and GPU
implementations of NNs for years, including CNNs, fast
implementations of CNNs on GPUs were needed to progress on
computer vision.[74][76][35][85][12] In 2011, this approach achieved
for the first time superhuman performance in a visual pattern
recognition contest. Also in 2011, it won the ICDAR Chinese
handwriting contest, and in May 2012, it won the ISBI image
segmentation contest.[86] Until 2011, CNNs did not play a major
role at computer vision conferences, but in June 2012, a paper by Ciresan et al. at the leading conference
CVPR[3] showed how max-pooling CNNs on GPU can dramatically improve many vision benchmark
records. In October 2012, a similar system by Krizhevsky et al.[4] won the large-scale ImageNet
competition by a significant margin over shallow machine learning methods. In November 2012, Ciresan et
al.'s system also won the ICPR contest on analysis of large medical images for cancer detection, and in the
following year also the MICCAI Grand Challenge on the same topic.[87] In 2013 and 2014, the error rate
on the ImageNet task using deep learning was further reduced, following a similar trend in large-scale
speech recognition.

Image classification was then extended to the more challenging task of generating descriptions (captions)
for images, often as a combination of CNNs and LSTMs.[88][89][90]

Some researchers state that the October 2012 ImageNet victory anchored the start of a "deep learning
revolution" that has transformed the AI industry.[91]

In March 2019, Yoshua Bengio, Geoffrey Hinton and Yann LeCun were awarded the Turing Award for
conceptual and engineering breakthroughs that have made deep neural networks a critical component of
computing.

Deep learning revolution

Neural networks
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Artificial neural networks (ANNs) or connectionist systems are computing systems inspired by the
biological neural networks that constitute animal brains. Such systems learn (progressively improve their
ability) to do tasks by considering examples, generally without task-specific programming. For example, in
image recognition, they might learn to identify images that contain cats by analyzing example images that
have been manually labeled as "cat" or "no cat" and using the analytic results to identify cats in other
images. They have found most use in applications difficult to express with a traditional computer algorithm
using rule-based programming.

An ANN is based on a collection of connected units called artificial neurons, (analogous to biological
neurons in a biological brain). Each connection (synapse) between neurons can transmit a signal to another
neuron. The receiving (postsynaptic) neuron can process the signal(s) and then signal downstream neurons
connected to it. Neurons may have state, generally represented by real numbers, typically between 0 and 1.
Neurons and synapses may also have a weight that varies as learning proceeds, which can increase or
decrease the strength of the signal that it sends downstream.

Typically, neurons are organized in layers. Different layers may perform different kinds of transformations
on their inputs. Signals travel from the first (input), to the last (output) layer, possibly after traversing the
layers multiple times.

The original goal of the neural network approach was to solve problems in the same way that a human
brain would. Over time, attention focused on matching specific mental abilities, leading to deviations from
biology such as backpropagation, or passing information in the reverse direction and adjusting the network
to reflect that information.

Neural networks have been used on a variety of tasks, including computer vision, speech recognition,
machine translation, social network filtering, playing board and video games and medical diagnosis.

As of 2017, neural networks typically have a few thousand to a few million units and millions of
connections. Despite this number being several order of magnitude less than the number of neurons on a
human brain, these networks can perform many tasks at a level beyond that of humans (e.g., recognizing
faces, playing "Go"[92] ).

A deep neural network (DNN) is an artificial neural network (ANN) with multiple layers between the input
and output layers.[9][12] There are different types of neural networks but they always consist of the same
components: neurons, synapses, weights, biases, and functions.[93] These components functioning similar
to the human brains and can be trained like any other ML algorithm.

For example, a DNN that is trained to recognize dog breeds will go over the given image and calculate the
probability that the dog in the image is a certain breed. The user can review the results and select which
probabilities the network should display (above a certain threshold, etc.) and return the proposed label.
Each mathematical manipulation as such is considered a layer, and complex DNN have many layers, hence
the name "deep" networks.

DNNs can model complex non-linear relationships. DNN architectures generate compositional models
where the object is expressed as a layered composition of primitives.[94] The extra layers enable
composition of features from lower layers, potentially modeling complex data with fewer units than a
similarly performing shallow network.[9] For instance, it was proved that sparse multivariate polynomials
are exponentially easier to approximate with DNNs than with shallow networks.[95]

Artificial neural networks

Deep neural networks
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Deep architectures include many variants of a few basic approaches. Each architecture has found success in
specific domains. It is not always possible to compare the performance of multiple architectures, unless they
have been evaluated on the same data sets.

DNNs are typically feedforward networks in which data flows from the input layer to the output layer
without looping back. At first, the DNN creates a map of virtual neurons and assigns random numerical
values, or "weights", to connections between them. The weights and inputs are multiplied and return an
output between 0 and 1. If the network did not accurately recognize a particular pattern, an algorithm
would adjust the weights.[96] That way the algorithm can make certain parameters more influential, until it
determines the correct mathematical manipulation to fully process the data.

Recurrent neural networks (RNNs), in which data can flow in any direction, are used for applications such
as language modeling.[97][98][99][100][101] Long short-term memory is particularly effective for this
use.[50][102]

Convolutional deep neural networks (CNNs) are used in computer vision.[103] CNNs also have been
applied to acoustic modeling for automatic speech recognition (ASR).[104]

As with ANNs, many issues can arise with naively trained DNNs. Two common issues are overfitting and
computation time.

DNNs are prone to overfitting because of the added layers of abstraction, which allow them to model rare
dependencies in the training data. Regularization methods such as Ivakhnenko's unit pruning[26] or weight
decay ( -regularization) or sparsity ( -regularization) can be applied during training to combat
overfitting.[105] Alternatively dropout regularization randomly omits units from the hidden layers during
training. This helps to exclude rare dependencies.[106] Finally, data can be augmented via methods such as
cropping and rotating such that smaller training sets can be increased in size to reduce the chances of
overfitting.[107]

DNNs must consider many training parameters, such as the size (number of layers and number of units per
layer), the learning rate, and initial weights. Sweeping through the parameter space for optimal parameters
may not be feasible due to the cost in time and computational resources. Various tricks, such as batching
(computing the gradient on several training examples at once rather than individual examples)[108] speed up
computation. Large processing capabilities of many-core architectures (such as GPUs or the Intel Xeon
Phi) have produced significant speedups in training, because of the suitability of such processing
architectures for the matrix and vector computations.[109][110]

Alternatively, engineers may look for other types of neural networks with more straightforward and
convergent training algorithms. CMAC (cerebellar model articulation controller) is one such kind of neural
network. It doesn't require learning rates or randomized initial weights for CMAC. The training process can
be guaranteed to converge in one step with a new batch of data, and the computational complexity of the
training algorithm is linear with respect to the number of neurons involved.[111][112]

Since the 2010s, advances in both machine learning algorithms and computer hardware have led to more
efficient methods for training deep neural networks that contain many layers of non-linear hidden units and
a very large output layer.[113] By 2019, graphic processing units (GPUs), often with AI-specific
enhancements, had displaced CPUs as the dominant method of training large-scale commercial cloud
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AI.[114] OpenAI estimated the hardware computation used in the largest deep learning projects from
AlexNet (2012) to AlphaZero (2017), and found a 300,000-fold increase in the amount of computation
required, with a doubling-time trendline of 3.4 months.[115][116]

Special electronic circuits called deep learning processors were designed to speed up deep learning
algorithms. Deep learning processors include neural processing units (NPUs) in Huawei cellphones[117]

and cloud computing servers such as tensor processing units (TPU) in the Google Cloud Platform.[118]

Cerebras Systems has also built a dedicated system to handle large deep learning models, the CS-2, based
on the largest processor in the industry, the second-generation Wafer Scale Engine (WSE-2).[119][120]

Atomically thin semiconductors are considered promising for energy-efficient deep learning hardware
where the same basic device structure is used for both logic operations and data storage. In 2020, Marega et
al. published experiments with a large-area active channel material for developing logic-in-memory devices
and circuits based on floating-gate field-effect transistors (FGFETs).[121]

In 2021, J. Feldmann et al. proposed an integrated photonic hardware accelerator for parallel convolutional
processing.[122] The authors identify two key advantages of integrated photonics over its electronic
counterparts: (1) massively parallel data transfer through wavelength division multiplexing in conjunction
with frequency combs, and (2) extremely high data modulation speeds.[122] Their system can execute
trillions of multiply-accumulate operations per second, indicating the potential of integrated photonics in
data-heavy AI applications.[122]

Large-scale automatic speech recognition is the first and most convincing successful case of deep learning.
LSTM RNNs can learn "Very Deep Learning" tasks[12] that involve multi-second intervals containing
speech events separated by thousands of discrete time steps, where one time step corresponds to about 10
ms. LSTM with forget gates[102] is competitive with traditional speech recognizers on certain tasks.[51]

The initial success in speech recognition was based on small-scale recognition tasks based on TIMIT. The
data set contains 630 speakers from eight major dialects of American English, where each speaker reads 10
sentences.[123] Its small size lets many configurations be tried. More importantly, the TIMIT task concerns
phone-sequence recognition, which, unlike word-sequence recognition, allows weak phone bigram
language models. This lets the strength of the acoustic modeling aspects of speech recognition be more
easily analyzed. The error rates listed below, including these early results and measured as percent phone
error rates (PER), have been summarized since 1991.

Applications
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Method Percent phone
error rate (PER) (%)

Randomly Initialized RNN[124] 26.1

Bayesian Triphone GMM-HMM 25.6

Hidden Trajectory (Generative) Model 24.8

Monophone Randomly Initialized DNN 23.4

Monophone DBN-DNN 22.4

Triphone GMM-HMM with BMMI Training 21.7

Monophone DBN-DNN on fbank 20.7

Convolutional DNN[125] 20.0

Convolutional DNN w. Heterogeneous Pooling 18.7

Ensemble DNN/CNN/RNN[126] 18.3

Bidirectional LSTM 17.8

Hierarchical Convolutional Deep Maxout Network[127] 16.5

The debut of DNNs for speaker recognition in the late 1990s and speech recognition around 2009-2011
and of LSTM around 2003–2007, accelerated progress in eight major areas:[8][68][66]

Scale-up/out and accelerated DNN training and decoding
Sequence discriminative training
Feature processing by deep models with solid understanding of the underlying mechanisms
Adaptation of DNNs and related deep models
Multi-task and transfer learning by DNNs and related deep models
CNNs and how to design them to best exploit domain knowledge of speech
RNN and its rich LSTM variants
Other types of deep models including tensor-based models and integrated deep
generative/discriminative models.

All major commercial speech recognition systems (e.g., Microsoft Cortana, Xbox, Skype Translator,
Amazon Alexa, Google Now, Apple Siri, Baidu and iFlyTek voice search, and a range of Nuance speech
products, etc.) are based on deep learning.[8][128][129]

A common evaluation set for image classification is the MNIST database data set. MNIST is composed of
handwritten digits and includes 60,000 training examples and 10,000 test examples. As with TIMIT, its
small size lets users test multiple configurations. A comprehensive list of results on this set is available.[130]

Deep learning-based image recognition has become "superhuman", producing more accurate results than
human contestants. This first occurred in 2011 in recognition of traffic signs, and in 2014, with recognition
of human faces.[131][132]

Deep learning-trained vehicles now interpret 360° camera views.[133] Another example is Facial
Dysmorphology Novel Analysis (FDNA) used to analyze cases of human malformation connected to a
large database of genetic syndromes.

Image recognition
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Closely related to the progress that has been made in image recognition is the increasing application of deep
learning techniques to various visual art tasks. DNNs have proven themselves capable, for example, of

identifying the style period of a given painting[134][135]

Neural Style Transfer – capturing the style of a given artwork and applying it in a visually
pleasing manner to an arbitrary photograph or video[134][135]

generating striking imagery based on random visual input fields.[134][135]

Neural networks have been used for implementing language models since the early 2000s.[97] LSTM
helped to improve machine translation and language modeling.[98][99][100]

Other key techniques in this field are negative sampling[136] and word embedding. Word embedding, such
as word2vec, can be thought of as a representational layer in a deep learning architecture that transforms an
atomic word into a positional representation of the word relative to other words in the dataset; the position
is represented as a point in a vector space. Using word embedding as an RNN input layer allows the
network to parse sentences and phrases using an effective compositional vector grammar. A compositional
vector grammar can be thought of as probabilistic context free grammar (PCFG) implemented by an
RNN.[137] Recursive auto-encoders built atop word embeddings can assess sentence similarity and detect
paraphrasing.[137] Deep neural architectures provide the best results for constituency parsing,[138]

sentiment analysis,[139] information retrieval,[140][141] spoken language understanding,[142] machine
translation,[98][143] contextual entity linking,[143] writing style recognition,[144] Text classification and
others.[145]

Recent developments generalize word embedding to sentence embedding.

Google Translate (GT) uses a large end-to-end long short-term memory (LSTM)
network.[146][147][148][149] Google Neural Machine Translation (GNMT) uses an example-based machine
translation method in which the system "learns from millions of examples."[147] It translates "whole
sentences at a time, rather than pieces. Google Translate supports over one hundred languages.[147] The
network encodes the "semantics of the sentence rather than simply memorizing phrase-to-phrase
translations".[147][150] GT uses English as an intermediate between most language pairs.[150]

A large percentage of candidate drugs fail to win regulatory approval. These failures are caused by
insufficient efficacy (on-target effect), undesired interactions (off-target effects), or unanticipated toxic
effects.[151][152] Research has explored use of deep learning to predict the biomolecular targets,[80][81] off-
targets, and toxic effects of environmental chemicals in nutrients, household products and drugs.[82][83][84]

AtomNet is a deep learning system for structure-based rational drug design.[153] AtomNet was used to
predict novel candidate biomolecules for disease targets such as the Ebola virus[154] and multiple
sclerosis.[155][156]

Visual art processing
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In 2017 graph neural networks were used for the first time to predict various properties of molecules in a
large toxicology data set.[157] In 2019, generative neural networks were used to produce molecules that
were validated experimentally all the way into mice.[158][159]

Deep reinforcement learning has been used to approximate the value of possible direct marketing actions,
defined in terms of RFM variables. The estimated value function was shown to have a natural interpretation
as customer lifetime value.[160]

Recommendation systems have used deep learning to extract meaningful features for a latent factor model
for content-based music and journal recommendations.[161][162] Multi-view deep learning has been applied
for learning user preferences from multiple domains.[163] The model uses a hybrid collaborative and
content-based approach and enhances recommendations in multiple tasks.

An autoencoder ANN was used in bioinformatics, to predict gene ontology annotations and gene-function
relationships.[164]

In medical informatics, deep learning was used to predict sleep quality based on data from wearables[165]

and predictions of health complications from electronic health record data.[166]

Deep learning has been shown to produce competitive results in medical application such as cancer cell
classification, lesion detection, organ segmentation and image enhancement.[167][168] Modern deep
learning tools demonstrate the high accuracy of detecting various diseases and the helpfulness of their use
by specialists to improve the diagnosis efficiency.[169][170]

Finding the appropriate mobile audience for mobile advertising is always challenging, since many data
points must be considered and analyzed before a target segment can be created and used in ad serving by
any ad server.[171] Deep learning has been used to interpret large, many-dimensioned advertising datasets.
Many data points are collected during the request/serve/click internet advertising cycle. This information
can form the basis of machine learning to improve ad selection.

Deep learning has been successfully applied to inverse problems such as denoising, super-resolution,
inpainting, and film colorization.[172] These applications include learning methods such as "Shrinkage
Fields for Effective Image Restoration"[173] which trains on an image dataset, and Deep Image Prior,
which trains on the image that needs restoration.

Customer relationship management

Recommendation systems

Bioinformatics

Medical image analysis

Mobile advertising

Image restoration

https://en.wikipedia.org/wiki/Graph_neural_network
https://en.wikipedia.org/wiki/Deep_reinforcement_learning
https://en.wikipedia.org/wiki/Direct_marketing
https://en.wikipedia.org/wiki/RFM_(customer_value)
https://en.wikipedia.org/wiki/Customer_lifetime_value
https://en.wikipedia.org/wiki/Autoencoder
https://en.wikipedia.org/wiki/Bioinformatics
https://en.wikipedia.org/wiki/Gene_Ontology
https://en.wikipedia.org/wiki/Electronic_health_record
https://en.wikipedia.org/wiki/Mobile_advertising
https://en.wikipedia.org/wiki/Inverse_problems
https://en.wikipedia.org/wiki/Denoising
https://en.wikipedia.org/wiki/Super-resolution
https://en.wikipedia.org/wiki/Inpainting
https://en.wikipedia.org/wiki/Film_colorization
https://en.wikipedia.org/wiki/Deep_Image_Prior


Deep learning is being successfully applied to financial fraud detection, tax evasion detection,[174] and anti-
money laundering.[175] A potentially impressive demonstration of unsupervised learning as prosecution of
financial crime is required to produce training data.

Also of note is that while the state of the art model in automated financial crime detection has existed for
quite some time, the applications for deep learning referred to here dramatically under perform much
simpler theoretical models. One such, yet to be implemented model, the Sensor Location Heuristic and
Simple Any Human Detection for Financial Crimes (SLHSAHDFC), is an example.

The model works with the simple heuristic of choosing where it gets its input data. By placing the sensors
by places frequented by large concentrations of wealth and power and then simply identifying any live
human being, it turns out that the automated detection of financial crime is accomplished at very high
accuracies and very high confidence levels. Even better, the model has shown to be extremely effective at
identifying not just crime but large, very destructive and egregious crime. Due to the effectiveness of such
models it is highly likely that applications to financial crime detection by deep learning will never be able to
compete.

The United States Department of Defense applied deep learning to train robots in new tasks through
observation.[176]

Physics informed neural networks have been used to solve partial differential equations in both forward and
inverse problems in a data driven manner.[177] One example is the reconstructing fluid flow governed by
the Navier-Stokes equations. Using physics informed neural networks does not require the often expensive
mesh generation that conventional CFD methods relies on.[178][179]

Image reconstruction is the reconstruction of the underlying images from the image-related measurements.
Several works showed the better and superior performance of the deep learning methods compared to
analytical methods for various applications, e.g., spectral imaging [180] and ultrasound imaging.[181]

Epigenetic clock

For more information, see Epigenetic clock.

An epigenetic clock is a biochemical test that can be used to measure age. Galkin et al. used deep neural
networks to train an epigenetic aging clock of unprecedented accuracy using >6,000 blood samples. The
clock uses information from 1000 CpG sites and predicts people with certain conditions older than healthy
controls: IBD, frontotemporal dementia, ovarian cancer, obesity. The aging clock is planned to be released
for public use in 2021 by an Insilico Medicine spinoff company Deep Longevity.
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Deep learning is closely related to a class of theories of brain development (specifically, neocortical
development) proposed by cognitive neuroscientists in the early 1990s.[182][183][184][185] These
developmental theories were instantiated in computational models, making them predecessors of deep
learning systems. These developmental models share the property that various proposed learning dynamics
in the brain (e.g., a wave of nerve growth factor) support the self-organization somewhat analogous to the
neural networks utilized in deep learning models. Like the neocortex, neural networks employ a hierarchy
of layered filters in which each layer considers information from a prior layer (or the operating
environment), and then passes its output (and possibly the original input), to other layers. This process
yields a self-organizing stack of transducers, well-tuned to their operating environment. A 1995 description
stated, "...the infant's brain seems to organize itself under the influence of waves of so-called trophic-factors
... different regions of the brain become connected sequentially, with one layer of tissue maturing before
another and so on until the whole brain is mature."[186]

A variety of approaches have been used to investigate the plausibility of deep learning models from a
neurobiological perspective. On the one hand, several variants of the backpropagation algorithm have been
proposed in order to increase its processing realism.[187][188] Other researchers have argued that
unsupervised forms of deep learning, such as those based on hierarchical generative models and deep belief
networks, may be closer to biological reality.[189][190] In this respect, generative neural network models
have been related to neurobiological evidence about sampling-based processing in the cerebral cortex.[191]

Although a systematic comparison between the human brain organization and the neuronal encoding in
deep networks has not yet been established, several analogies have been reported. For example, the
computations performed by deep learning units could be similar to those of actual neurons[192] and neural
populations.[193] Similarly, the representations developed by deep learning models are similar to those
measured in the primate visual system[194] both at the single-unit[195] and at the population[196] levels.

Facebook's AI lab performs tasks such as automatically tagging uploaded pictures with the names of the
people in them.[197]

Google's DeepMind Technologies developed a system capable of learning how to play Atari video games
using only pixels as data input. In 2015 they demonstrated their AlphaGo system, which learned the game
of Go well enough to beat a professional Go player.[198][199][200] Google Translate uses a neural network
to translate between more than 100 languages.

In 2017, Covariant.ai was launched, which focuses on integrating deep learning into factories.[201]

As of 2008,[202] researchers at The University of Texas at Austin (UT) developed a machine learning
framework called Training an Agent Manually via Evaluative Reinforcement, or TAMER, which proposed
new methods for robots or computer programs to learn how to perform tasks by interacting with a human
instructor.[176] First developed as TAMER, a new algorithm called Deep TAMER was later introduced in
2018 during a collaboration between U.S. Army Research Laboratory (ARL) and UT researchers. Deep
TAMER used deep learning to provide a robot the ability to learn new tasks through observation.[176]

Using Deep TAMER, a robot learned a task with a human trainer, watching video streams or observing a
human perform a task in-person. The robot later practiced the task with the help of some coaching from the
trainer, who provided feedback such as “good job” and “bad job.”[203]

Commercial activity

Criticism and comment
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Deep learning has attracted both criticism and comment, in some cases from outside the field of computer
science.

A main criticism concerns the lack of theory surrounding some methods.[204] Learning in the most
common deep architectures is implemented using well-understood gradient descent. However, the theory
surrounding other algorithms, such as contrastive divergence is less clear. (e.g., Does it converge? If so,
how fast? What is it approximating?) Deep learning methods are often looked at as a black box, with most
confirmations done empirically, rather than theoretically.[205]

Others point out that deep learning should be looked at as a step towards realizing strong AI, not as an all-
encompassing solution. Despite the power of deep learning methods, they still lack much of the
functionality needed for realizing this goal entirely. Research psychologist Gary Marcus noted:

"Realistically, deep learning is only part of the larger challenge of building intelligent
machines. Such techniques lack ways of representing causal relationships (...) have no obvious
ways of performing logical inferences, and they are also still a long way from integrating
abstract knowledge, such as information about what objects are, what they are for, and how
they are typically used. The most powerful A.I. systems, like Watson (...) use techniques like
deep learning as just one element in a very complicated ensemble of techniques, ranging from
the statistical technique of Bayesian inference to deductive reasoning."[206]

In further reference to the idea that artistic sensitivity might be inherent in relatively low levels of the
cognitive hierarchy, a published series of graphic representations of the internal states of deep (20-30 layers)
neural networks attempting to discern within essentially random data the images on which they were
trained[207] demonstrate a visual appeal: the original research notice received well over 1,000 comments,
and was the subject of what was for a time the most frequently accessed article on The Guardian's[208]

website.

Some deep learning architectures display problematic behaviors,[209] such as confidently classifying
unrecognizable images as belonging to a familiar category of ordinary images (2014)[210] and
misclassifying minuscule perturbations of correctly classified images (2013).[211] Goertzel hypothesized
that these behaviors are due to limitations in their internal representations and that these limitations would
inhibit integration into heterogeneous multi-component artificial general intelligence (AGI)
architectures.[209] These issues may possibly be addressed by deep learning architectures that internally
form states homologous to image-grammar[212] decompositions of observed entities and events.[209]

Learning a grammar (visual or linguistic) from training data would be equivalent to restricting the system to
commonsense reasoning that operates on concepts in terms of grammatical production rules and is a basic
goal of both human language acquisition[213] and artificial intelligence (AI).[214]

As deep learning moves from the lab into the world, research and experience show that artificial neural
networks are vulnerable to hacks and deception.[215] By identifying patterns that these systems use to
function, attackers can modify inputs to ANNs in such a way that the ANN finds a match that human
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Cyber threat

https://en.wikipedia.org/wiki/Black_box
https://en.wikipedia.org/wiki/Causality
https://en.wikipedia.org/wiki/Inference
https://en.wikipedia.org/wiki/Watson_(computer)
https://en.wikipedia.org/wiki/Bayesian_inference
https://en.wikipedia.org/wiki/Deductive_reasoning
https://en.wikipedia.org/wiki/The_Guardian
https://en.wikipedia.org/wiki/Ben_Goertzel
https://en.wikipedia.org/wiki/Artificial_general_intelligence
https://en.wikipedia.org/wiki/Grammar_induction
https://en.wikipedia.org/wiki/Commonsense_reasoning
https://en.wikipedia.org/wiki/Production_(computer_science)
https://en.wikipedia.org/wiki/Artificial_intelligence


observers would not recognize. For example, an attacker can make subtle changes to an image such that the
ANN finds a match even though the image looks to a human nothing like the search target. Such
manipulation is termed an “adversarial attack.”[216]

In 2016 researchers used one ANN to doctor images in trial and error fashion, identify another's focal
points and thereby generate images that deceived it. The modified images looked no different to human
eyes. Another group showed that printouts of doctored images then photographed successfully tricked an
image classification system.[217] One defense is reverse image search, in which a possible fake image is
submitted to a site such as TinEye that can then find other instances of it. A refinement is to search using
only parts of the image, to identify images from which that piece may have been taken.[218]

Another group showed that certain psychedelic spectacles could fool a facial recognition system into
thinking ordinary people were celebrities, potentially allowing one person to impersonate another. In 2017
researchers added stickers to stop signs and caused an ANN to misclassify them.[217]

ANNs can however be further trained to detect attempts at deception, potentially leading attackers and
defenders into an arms race similar to the kind that already defines the malware defense industry. ANNs
have been trained to defeat ANN-based anti-malware software by repeatedly attacking a defense with
malware that was continually altered by a genetic algorithm until it tricked the anti-malware while retaining
its ability to damage the target.[217]

In 2016, another group demonstrated that certain sounds could make the Google Now voice command
system open a particular web address, and hypothesized that this could "serve as a stepping stone for
further attacks (e.g., opening a web page hosting drive-by malware)."[217]

In “data poisoning,” false data is continually smuggled into a machine learning system's training set to
prevent it from achieving mastery.[217]

Most Deep Learning systems rely on training and verification data that is generated and/or annotated by
humans. It has been argued in media philosophy that not only low-paid clickwork (e.g. on Amazon
Mechanical Turk) is regularly deployed for this purpose, but also implicit forms of human microwork that
are often not recognized as such.[219] The philosopher Rainer Mühlhoff distinguishes five types of
"machinic capture" of human microwork to generate training data: (1) gamification (the embedding of
annotation or computation tasks in the flow of a game), (2) "trapping and tracking" (e.g. CAPTCHAs for
image recognition or click-tracking on Google search results pages), (3) exploitation of social motivations
(e.g. tagging faces on Facebook to obtain labeled facial images), (4) information mining (e.g. by leveraging
quantified-self devices such as activity trackers) and (5) clickwork.[219]

Mühlhoff argues that in most commercial end-user applications of Deep Learning such as Facebook's face
recognition system, the need for training data does not stop once an ANN is trained. Rather, there is a
continued demand for human-generated verification data to constantly calibrate and update the ANN. For
this purpose Facebook introduced the feature that once a user is automatically recognized in an image, they
receive a notification. They can choose whether of not they like to be publicly labeled on the image, or tell
Facebook that it is not them in the picture.[220] This user interface is a mechanism to generate "a constant
stream of verification data"[219] to further train the network in real-time. As Mühlhoff argues, involvement
of human users to generate training and verification data is so typical for most commercial end-user
applications of Deep Learning that such systems may be referred to as "human-aided artificial
intelligence".[219]

Reliance on human microwork
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