
Autoencoder

An autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled data
(unsupervised learning).[1] The encoding is validated and refined by attempting to regenerate the input from
the encoding. The autoencoder learns a representation (encoding) for a set of data, typically for
dimensionality reduction, by training the network to ignore insignificant data (“noise”).

Variants exist, aiming to force the learned representations to assume useful properties.[2] Examples are
regularized autoencoders (Sparse, Denoising and Contractive), which are effective in learning
representations for subsequent classification tasks,[3] and Variational autoencoders, with applications as
generative models.[4] Autoencoders are applied to many problems, including facial recognition,[5] feature
detection,[6] anomaly detection and acquiring the meaning of words.[7][8] Autoencoders are also generative
models which can randomly generate new data that is similar to the input data (training data).[6]
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An autoencoder is defined by the following components:

Two sets: the space of decoded messages ; the space of encoded messages . Almost
always, both  and  are Euclidean spaces, that is,  for some .

Two parametrized families of functions: the encoder family , parametrized by ;
the decoder family , parametrized by .

For any , we usually write , and refer to it as the code, the latent variable, latent
representation, latent vector, etc. Conversely, for any , we usually write , and refer to it
as the (decoded) message.

Usually, both the encoder and the decoder are defined as multilayer perceptrons. For example, a one-layer-
MLP encoder  is:

where  is an element-wise activation function such as a sigmoid function or a rectified linear unit,  is a
matrix called "weight", and  is a vector called "bias".

An autoencoder, by itself, is simply a tuple of two functions. To judge its quality, we need a task. A task is
defined by a reference probability distribution  over , and a "reconstruction quality" function 

, such that  measures how much  differs from .

With those, we can define the loss function for the autoencoder as

The optimal autoencoder for the given task  is then . The search for the optimal

autoencoder can be accomplished by any mathematical optimization technique, but usually by gradient
descent. This search process is referred to as "training the autoencoder".

In most situations, the reference distribution is just the empirical distribution given by a dataset 
, so that
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Schema of a basic Autoencoder

and the quality function is just L2 loss: . Then the problem of searching for the
optimal autoencoder is just a least-squares optimization:

An autoencoder has two main parts: an encoder that maps the
message to a code, and a decoder that reconstructs the message
from the code. An optimal autoencoder would perform as close to
perfect reconstruction as possible, with "close to perfect" defined
by the reconstruction quality function .

The simplest way to perform the copying task perfectly would be to
duplicate the signal. To suppress this behavior, the code space 
usually has fewer dimensions than the message space .

Such an autoencoder is called undercomplete. It can be interpreted
as compressing the message, or reducing its dimensionality.[9]

At the limit of an ideal undercomplete autoencoder, every possible
code  in the code space is used to encode a message  that really appears in the distribution , and the
decoder is also perfect: . This ideal autoencoder can then be used to generate messages
indistinguishable from real messages, by feeding its decoder arbitrary code  and obtaining , which
is a message that really appears in the distribution .

If the code space  has dimension larger than (overcomplete), or equal to, the message space , or the
hidden units are given enough capacity, an autoencoder can learn the identity function and become useless.
However, experimental results found that overcomplete autoencoders might still learn useful features.[10]

In the ideal setting, the code dimension and the model capacity could be set on the basis of the complexity
of the data distribution to be modeled. A standard way to do so is to add modifications to the basic
autoencoder, to be detailed below.[2]

The autoencoder has also been called the autoassociator,[11] or Diabolo network[12].[10] Its first
applications date to the 1980s.[2][13][14] Their most traditional application was dimensionality reduction or
feature learning, but the concept became widely used for learning generative models of data.[15][16] Some
of the most powerful AIs in the 2010s involved autoencoders stacked inside deep neural networks.[17]
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Simple schema of a single-layer
sparse autoencoder. The hidden
nodes in bright yellow are activated,
while the light yellow ones are
inactive. The activation depends on
the input.

Various techniques exist to prevent autoencoders from learning the identity function and to improve their
ability to capture important information and learn richer representations.

Inspired by the sparse coding hypothesis in neuroscience, sparse autoencoders are variants of autoencoders,
such that the codes  for messages tend to be sparse codes, that is,  is close to zero in most
entries. Sparse autoencoders may include more (rather than fewer) hidden units than inputs, but only a
small number of the hidden units are allowed to be active at the same time.[17] Encouraging sparsity
improves performance on classification tasks.[18]

There are two main ways to enforce sparsity. One way is to simply
clamp all but the highest-k activations of the latent code to zero.
This is the k-sparse autoencoder.[19]

The k-sparse autoencoder inserts the following "k-sparse function"
in the latent layer of a standard autoencoder:

where  if  ranks in the top k, and 0 otherwise.

Backpropagating through  is simple: set gradient to 0 for 
entries, and keep gradient for  entries. This is essentially a
generalized ReLU function.[19]

The other way is a relaxed version of the k-sparse autoencoder.
Instead of forcing sparsity, we add a sparsity regularization loss,
then optimize for

where  measures how much sparsity we want to enforce.[20]

Let the autoencoder architecture have  layers. To define a sparsity regularization loss, we need a
"desired" sparsity  for each layer, a weight  for how much to enforce each sparsity, and a function 

 to measure much two sparsities differ.

For each input , let the actual sparsity of activation in each layer  be

where  is the activation in the  -th neuron of the  -th layer upon input .
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The sparsity loss upon input  for one layer is , and the sparsity regularization loss for the
entire autoencoder is the expected weighted sum of sparsity losses:

Typically, the function  is either the Kullback-Leibler (KL) divergence, as[18][20][21][22]

or the L1 loss, as , or the L2 loss, as .

Alternatively, the sparsity regularization loss may be defined without reference to any "desired sparsity",
but simply force as much sparsity as possible. In this case, one can sparsity regularization loss as

where  is the activation vector in the -th layer of the autoencoder. The norm  is usually the L1
norm (giving the L1 sparse autoencoder) or the L2 norm (giving the L2 sparse autoencoder).

Denoising autoencoders (DAE) try to achieve a good representation by changing the reconstruction
criterion.[2][3]

A DAE is defined by adding a noise process to the standard autoencoder. A noise process is defined by a
probability distribution  over functions . That is, the function  takes a message ,
and corrupts it to a noisy version . The function  is selected randomly, with a probability distribution

.

Given a task , the problem of training a DAE is the optimization problem:

That is, the optimal DAE should take any noisy message and attempt to recover the original message
without noise, thus the name "denoising".

Usually, the noise process  is applied only during training and testing, not during downstream use.

The use of DAE depends on two assumptions:

There exist representations to the messages that are relatively stable and robust to the type
of noise we are likely to encounter;

Denoising autoencoder (DAE)
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The said representations capture structures in the input distribution that are useful for our
purposes.[3]

Example noise processes include:

additive isotropic Gaussian noise,
masking noise (a fraction of the input is randomly chosen and set to 0)
salt-and-pepper noise (a fraction of the input is randomly chosen and randomly set to its
minimum or maximum value).[3]

A contractive autoencoder adds the contractive regularization loss to the standard autoencoder loss:

where  measures how much contractive-ness we want to enforce. The contractive regularization loss
itself is defined as the expected Frobenius norm of the Jacobian matrix of the encoder activations with
respect to the input:

To understand what  measures, note the fact

for any message , and small variation  in it. Thus, if  is small, it means that a small
neighborhood of the message maps to a small neighborhood of its code. This is a desired property, as it
means small variation in the message leads to small, perhaps even zero, variation in its code, like how two
pictures may look the same even if they are not exactly the same.

The DAE can be understood as an infinitesimal limit of CAE: in the limit of small Gaussian input noise,
DAEs make the reconstruction function resist small but finite-sized input perturbations, while CAEs make
the extracted features resist infinitesimal input perturbations.

[23]

The concrete autoencoder is designed for discrete feature selection.[24] A concrete autoencoder forces the
latent space to consist only of a user-specified number of features. The concrete autoencoder uses a
continuous relaxation of the categorical distribution to allow gradients to pass through the feature selector
layer, which makes it possible to use standard backpropagation to learn an optimal subset of input features
that minimize reconstruction loss.

Contractive autoencoder (CAE)

Minimal description length autoencoder

Concrete autoencoder

Variational autoencoder (VAE)
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Schematic structure of an autoencoder with 3 fully
connected hidden layers. The code (z, or h for reference in
the text) is the most internal layer.

Variational autoencoders (VAEs) belong to the families of variational Bayesian methods. Despite the
architectural similarities with basic autoencoders, VAEs are architecture with different goals and with a
completely different mathematical formulation. The latent space is in this case composed by a mixture of
distributions instead of a fixed vector.

Given an input dataset  characterized by an unknown probability function  and a multivariate latent
encoding vector , the objective is to model the data as a distribution , with  defined as the set of the

network parameters so that .

Autoencoders are often trained with a single
layer encoder and a single layer decoder, but
using many-layered (deep) encoders and
decoders offers many advantages.[2]

Depth can exponentially reduce the
computational cost of representing
some functions.[2]

Depth can exponentially decrease the
amount of training data needed to
learn some functions.[2]

Experimentally, deep autoencoders
yield better compression compared to
shallow or linear autoencoders.[9]

Geoffrey Hinton developed the deep belief
network technique for training many-layered deep autoencoders. His method involves treating each
neighbouring set of two layers as a restricted Boltzmann machine so that pretraining approximates a good
solution, then using backpropagation to fine-tune the results.[9]

Researchers have debated whether joint training (i.e. training the whole architecture together with a single
global reconstruction objective to optimize) would be better for deep auto-encoders.[25] A 2015 study
showed that joint training learns better data models along with more representative features for classification
as compared to the layerwise method.[25] However, their experiments showed that the success of joint
training depends heavily on the regularization strategies adopted.[25][26]

The two main applications of autoencoders are dimensionality reduction and information retrieval,[2] but
modern variations have been applied to other tasks.

Dimensionality reduction was one of the first deep learning applications.[2]
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Plot of the first two Principal
Components (left) and a two-
dimension hidden layer of a Linear
Autoencoder (Right) applied to the
Fashion MNIST dataset.[27] The two
models being both linear learn to
span the same subspace. The
projection of the data points is
indeed identical, apart from rotation
of the subspace - to which PCA is
invariant.

Reconstruction of 28x28pixel images
by an Autoencoder with a code size
of two (two-units hidden layer) and
the reconstruction from the first two
Principal Components of PCA.
Images come from the Fashion
MNIST dataset.[27]

For Hinton's 2006 study,[9] he pretrained a multi-layer autoencoder
with a stack of RBMs and then used their weights to initialize a
deep autoencoder with gradually smaller hidden layers until hitting
a bottleneck of 30 neurons. The resulting 30 dimensions of the
code yielded a smaller reconstruction error compared to the first 30
components of a principal component analysis (PCA), and learned
a representation that was qualitatively easier to interpret, clearly
separating data clusters.[2][9]

Representing dimensions can improve performance on tasks such
as classification.[2] Indeed, the hallmark of dimensionality reduction
is to place semantically related examples near each other.[28]

If linear activations are used, or only a single sigmoid hidden layer,
then the optimal solution to an autoencoder is strongly related to
principal component analysis (PCA).[29][30] The weights of an
autoencoder with a single hidden layer of size  (where  is less
than the size of the input) span the same vector subspace as the one
spanned by the first  principal components, and the output of the
autoencoder is an orthogonal projection onto this subspace. The
autoencoder weights are not equal to the principal components, and
are generally not orthogonal, yet the principal components may be
recovered from them using the singular value decomposition.[31]

However, the potential of autoencoders resides in their non-
linearity, allowing the model to learn more powerful generalizations
compared to PCA, and to reconstruct the input with significantly
lower information loss.[9]

Information retrieval benefits particularly from dimensionality reduction in that search can become more
efficient in certain kinds of low dimensional spaces. Autoencoders were indeed applied to semantic
hashing, proposed by Salakhutdinov and Hinton in 2007.[28] By training the algorithm to produce a low-
dimensional binary code, all database entries could be stored in a hash table mapping binary code vectors to
entries. This table would then support information retrieval by returning all entries with the same binary
code as the query, or slightly less similar entries by flipping some bits from the query encoding.

Another application for autoencoders is anomaly detection.[32] [33][34][35][36] By learning to replicate the
most salient features in the training data under some of the constraints described previously, the model is
encouraged to learn to precisely reproduce the most frequently observed characteristics. When facing
anomalies, the model should worsen its reconstruction performance. In most cases, only data with normal
instances are used to train the autoencoder; in others, the frequency of anomalies is small compared to the
observation set so that its contribution to the learned representation could be ignored. After training, the
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autoencoder will accurately reconstruct "normal" data, while failing to do so with unfamiliar anomalous
data.[34] Reconstruction error (the error between the original data and its low dimensional reconstruction) is
used as an anomaly score to detect anomalies.[34]

Recent literature has however shown that certain autoencoding models can, counterintuitively, be very
good at reconstructing anomalous examples and consequently not able to reliably perform anomaly
detection.[37][38]

The characteristics of autoencoders are useful in image processing.

One example can be found in lossy image compression, where autoencoders outperformed other
approaches and proved competitive against JPEG 2000.[39][40]

Another useful application of autoencoders in image preprocessing is image denoising.[41][42][43]

Autoencoders found use in more demanding contexts such as medical imaging where they have been used
for image denoising[44] as well as super-resolution.[45][46] In image-assisted diagnosis, experiments have
applied autoencoders for breast cancer detection[47] and for modelling the relation between the cognitive
decline of Alzheimer's disease and the latent features of an autoencoder trained with MRI.[48]

In 2019 molecules generated with variational autoencoders were validated experimentally in mice.[49][50]

Recently, a stacked autoencoder framework produced promising results in predicting popularity of social
media posts,[51] which is helpful for online advertising strategies.

Autoencoders have been applied to machine translation, which is usually referred to as neural machine
translation (NMT).[52][53] Unlike traditional autoencoders, the output does not match the input - it is in
another language. In NMT, texts are treated as sequences to be encoded into the learning procedure, while
on the decoder side sequences in the target language(s) are generated. Language-specific autoencoders
incorporate further linguistic features into the learning procedure, such as Chinese decomposition
features.[54] Machine translation is rarely still done with autoencoders, but rather transformer networks.
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