
Autoencoder

An autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled data
(unsupervised learning).[1] The encoding is validated and refined by attempting to regenerate the input from
the encoding. The autoencoder learns a representation (encoding) for a set of data, typically for
dimensionality reduction, by training the network to ignore insignificant data (“noise”).

Variants exist, aiming to force the learned representations to assume useful properties.[2] Examples are
regularized autoencoders (Sparse, Denoising and Contractive), which are effective in learning
representations for subsequent classification tasks,[3] and Variational autoencoders, with applications as
generative models.[4] Autoencoders are applied to many problems, including facial recognition,[5] feature
detection,[6] anomaly detection and acquiring the meaning of words.[7][8] Autoencoders are also generative
models which can randomly generate new data that is similar to the input data (training data).[6]

Mathematical principles
Definition
Training an autoencoder
Interpretation

History
Variations

Regularized autoencoders
Concrete autoencoder
Variational autoencoder (VAE)

Advantages of depth
Training

Applications
Dimensionality reduction
Information retrieval
Anomaly detection
Image processing
Drug discovery
Popularity prediction
Machine translation

See also
References

Contents

Mathematical principles

https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Feature_learning
https://en.wikipedia.org/wiki/Unsupervised_learning
https://en.wikipedia.org/wiki/Feature_learning
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Generative_model
https://en.wikipedia.org/wiki/Face_recognition

An autoencoder is defined by the following components:

Two sets: the space of decoded messages ; the space of encoded messages . Almost
always, both and are Euclidean spaces, that is, for some .

Two parametrized families of functions: the encoder family , parametrized by ;
the decoder family , parametrized by .

For any , we usually write , and refer to it as the code, the latent variable, latent
representation, latent vector, etc. Conversely, for any , we usually write , and refer to it
as the (decoded) message.

Usually, both the encoder and the decoder are defined as multilayer perceptrons. For example, a one-layer-
MLP encoder is:

where is an element-wise activation function such as a sigmoid function or a rectified linear unit, is a
matrix called "weight", and is a vector called "bias".

An autoencoder, by itself, is simply a tuple of two functions. To judge its quality, we need a task. A task is
defined by a reference probability distribution over , and a "reconstruction quality" function

, such that measures how much differs from .

With those, we can define the loss function for the autoencoder as

The optimal autoencoder for the given task is then . The search for the optimal

autoencoder can be accomplished by any mathematical optimization technique, but usually by gradient
descent. This search process is referred to as "training the autoencoder".

In most situations, the reference distribution is just the empirical distribution given by a dataset
, so that

Definition

Training an autoencoder

https://en.wikipedia.org/wiki/Latent_variable
https://en.wikipedia.org/wiki/Multilayer_perceptron
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Sigmoid_function
https://en.wikipedia.org/wiki/Rectified_linear_unit
https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Empirical_measure

Schema of a basic Autoencoder

and the quality function is just L2 loss: . Then the problem of searching for the
optimal autoencoder is just a least-squares optimization:

An autoencoder has two main parts: an encoder that maps the
message to a code, and a decoder that reconstructs the message
from the code. An optimal autoencoder would perform as close to
perfect reconstruction as possible, with "close to perfect" defined
by the reconstruction quality function .

The simplest way to perform the copying task perfectly would be to
duplicate the signal. To suppress this behavior, the code space
usually has fewer dimensions than the message space .

Such an autoencoder is called undercomplete. It can be interpreted
as compressing the message, or reducing its dimensionality.[9]

At the limit of an ideal undercomplete autoencoder, every possible
code in the code space is used to encode a message that really appears in the distribution , and the
decoder is also perfect: . This ideal autoencoder can then be used to generate messages
indistinguishable from real messages, by feeding its decoder arbitrary code and obtaining , which
is a message that really appears in the distribution .

If the code space has dimension larger than (overcomplete), or equal to, the message space , or the
hidden units are given enough capacity, an autoencoder can learn the identity function and become useless.
However, experimental results found that overcomplete autoencoders might still learn useful features.[10]

In the ideal setting, the code dimension and the model capacity could be set on the basis of the complexity
of the data distribution to be modeled. A standard way to do so is to add modifications to the basic
autoencoder, to be detailed below.[2]

The autoencoder has also been called the autoassociator,[11] or Diabolo network[12].[10] Its first
applications date to the 1980s.[2][13][14] Their most traditional application was dimensionality reduction or
feature learning, but the concept became widely used for learning generative models of data.[15][16] Some
of the most powerful AIs in the 2010s involved autoencoders stacked inside deep neural networks.[17]

Interpretation

History

Variations

Regularized autoencoders

https://en.wikipedia.org/wiki/File:Autoencoder_schema.png
https://en.wikipedia.org/wiki/Least_squares
https://en.wikipedia.org/wiki/Data_compression
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Identity_function
https://en.wikipedia.org/wiki/Feature_learning
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Feature_learning
https://en.wikipedia.org/wiki/Generative_model
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Deep_learning

Simple schema of a single-layer
sparse autoencoder. The hidden
nodes in bright yellow are activated,
while the light yellow ones are
inactive. The activation depends on
the input.

Various techniques exist to prevent autoencoders from learning the identity function and to improve their
ability to capture important information and learn richer representations.

Inspired by the sparse coding hypothesis in neuroscience, sparse autoencoders are variants of autoencoders,
such that the codes for messages tend to be sparse codes, that is, is close to zero in most
entries. Sparse autoencoders may include more (rather than fewer) hidden units than inputs, but only a
small number of the hidden units are allowed to be active at the same time.[17] Encouraging sparsity
improves performance on classification tasks.[18]

There are two main ways to enforce sparsity. One way is to simply
clamp all but the highest-k activations of the latent code to zero.
This is the k-sparse autoencoder.[19]

The k-sparse autoencoder inserts the following "k-sparse function"
in the latent layer of a standard autoencoder:

where if ranks in the top k, and 0 otherwise.

Backpropagating through is simple: set gradient to 0 for
entries, and keep gradient for entries. This is essentially a
generalized ReLU function.[19]

The other way is a relaxed version of the k-sparse autoencoder.
Instead of forcing sparsity, we add a sparsity regularization loss,
then optimize for

where measures how much sparsity we want to enforce.[20]

Let the autoencoder architecture have layers. To define a sparsity regularization loss, we need a
"desired" sparsity for each layer, a weight for how much to enforce each sparsity, and a function

 to measure much two sparsities differ.

For each input , let the actual sparsity of activation in each layer be

where is the activation in the -th neuron of the -th layer upon input .

Sparse autoencoder (SAE)

https://en.wikipedia.org/wiki/File:Autoencoder_sparso.png
https://en.wikipedia.org/wiki/Identity_function
https://en.wikipedia.org/wiki/Sparse_coding
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://en.wikipedia.org/wiki/Relaxation_(approximation)

The sparsity loss upon input for one layer is , and the sparsity regularization loss for the
entire autoencoder is the expected weighted sum of sparsity losses:

Typically, the function is either the Kullback-Leibler (KL) divergence, as[18][20][21][22]

or the L1 loss, as , or the L2 loss, as .

Alternatively, the sparsity regularization loss may be defined without reference to any "desired sparsity",
but simply force as much sparsity as possible. In this case, one can sparsity regularization loss as

where is the activation vector in the -th layer of the autoencoder. The norm is usually the L1
norm (giving the L1 sparse autoencoder) or the L2 norm (giving the L2 sparse autoencoder).

Denoising autoencoders (DAE) try to achieve a good representation by changing the reconstruction
criterion.[2][3]

A DAE is defined by adding a noise process to the standard autoencoder. A noise process is defined by a
probability distribution over functions . That is, the function takes a message ,
and corrupts it to a noisy version . The function is selected randomly, with a probability distribution

.

Given a task , the problem of training a DAE is the optimization problem:

That is, the optimal DAE should take any noisy message and attempt to recover the original message
without noise, thus the name "denoising".

Usually, the noise process is applied only during training and testing, not during downstream use.

The use of DAE depends on two assumptions:

There exist representations to the messages that are relatively stable and robust to the type
of noise we are likely to encounter;

Denoising autoencoder (DAE)

https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence

The said representations capture structures in the input distribution that are useful for our
purposes.[3]

Example noise processes include:

additive isotropic Gaussian noise,
masking noise (a fraction of the input is randomly chosen and set to 0)
salt-and-pepper noise (a fraction of the input is randomly chosen and randomly set to its
minimum or maximum value).[3]

A contractive autoencoder adds the contractive regularization loss to the standard autoencoder loss:

where measures how much contractive-ness we want to enforce. The contractive regularization loss
itself is defined as the expected Frobenius norm of the Jacobian matrix of the encoder activations with
respect to the input:

To understand what measures, note the fact

for any message , and small variation in it. Thus, if is small, it means that a small
neighborhood of the message maps to a small neighborhood of its code. This is a desired property, as it
means small variation in the message leads to small, perhaps even zero, variation in its code, like how two
pictures may look the same even if they are not exactly the same.

The DAE can be understood as an infinitesimal limit of CAE: in the limit of small Gaussian input noise,
DAEs make the reconstruction function resist small but finite-sized input perturbations, while CAEs make
the extracted features resist infinitesimal input perturbations.

[23]

The concrete autoencoder is designed for discrete feature selection.[24] A concrete autoencoder forces the
latent space to consist only of a user-specified number of features. The concrete autoencoder uses a
continuous relaxation of the categorical distribution to allow gradients to pass through the feature selector
layer, which makes it possible to use standard backpropagation to learn an optimal subset of input features
that minimize reconstruction loss.

Contractive autoencoder (CAE)

Minimal description length autoencoder

Concrete autoencoder

Variational autoencoder (VAE)

https://en.wikipedia.org/wiki/Additive_white_Gaussian_noise
https://en.wikipedia.org/wiki/Frobenius_norm
https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant
https://en.wikipedia.org/wiki/Relaxation_(approximation)
https://en.wikipedia.org/wiki/Categorical_distribution
https://en.wikipedia.org/wiki/Backpropagation

Schematic structure of an autoencoder with 3 fully
connected hidden layers. The code (z, or h for reference in
the text) is the most internal layer.

Variational autoencoders (VAEs) belong to the families of variational Bayesian methods. Despite the
architectural similarities with basic autoencoders, VAEs are architecture with different goals and with a
completely different mathematical formulation. The latent space is in this case composed by a mixture of
distributions instead of a fixed vector.

Given an input dataset characterized by an unknown probability function and a multivariate latent
encoding vector , the objective is to model the data as a distribution , with defined as the set of the

network parameters so that .

Autoencoders are often trained with a single
layer encoder and a single layer decoder, but
using many-layered (deep) encoders and
decoders offers many advantages.[2]

Depth can exponentially reduce the
computational cost of representing
some functions.[2]

Depth can exponentially decrease the
amount of training data needed to
learn some functions.[2]

Experimentally, deep autoencoders
yield better compression compared to
shallow or linear autoencoders.[9]

Geoffrey Hinton developed the deep belief
network technique for training many-layered deep autoencoders. His method involves treating each
neighbouring set of two layers as a restricted Boltzmann machine so that pretraining approximates a good
solution, then using backpropagation to fine-tune the results.[9]

Researchers have debated whether joint training (i.e. training the whole architecture together with a single
global reconstruction objective to optimize) would be better for deep auto-encoders.[25] A 2015 study
showed that joint training learns better data models along with more representative features for classification
as compared to the layerwise method.[25] However, their experiments showed that the success of joint
training depends heavily on the regularization strategies adopted.[25][26]

The two main applications of autoencoders are dimensionality reduction and information retrieval,[2] but
modern variations have been applied to other tasks.

Dimensionality reduction was one of the first deep learning applications.[2]

Advantages of depth

Training

Applications

Dimensionality reduction

https://en.wikipedia.org/wiki/File:Autoencoder_structure.png
https://en.wikipedia.org/wiki/Variational_autoencoder
https://en.wikipedia.org/wiki/Variational_Bayesian_methods
https://en.wikipedia.org/wiki/Geoffrey_Hinton
https://en.wikipedia.org/wiki/Deep_belief_network
https://en.wikipedia.org/wiki/Restricted_Boltzmann_machine
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Deep_learning

Plot of the first two Principal
Components (left) and a two-
dimension hidden layer of a Linear
Autoencoder (Right) applied to the
Fashion MNIST dataset.[27] The two
models being both linear learn to
span the same subspace. The
projection of the data points is
indeed identical, apart from rotation
of the subspace - to which PCA is
invariant.

Reconstruction of 28x28pixel images
by an Autoencoder with a code size
of two (two-units hidden layer) and
the reconstruction from the first two
Principal Components of PCA.
Images come from the Fashion
MNIST dataset.[27]

For Hinton's 2006 study,[9] he pretrained a multi-layer autoencoder
with a stack of RBMs and then used their weights to initialize a
deep autoencoder with gradually smaller hidden layers until hitting
a bottleneck of 30 neurons. The resulting 30 dimensions of the
code yielded a smaller reconstruction error compared to the first 30
components of a principal component analysis (PCA), and learned
a representation that was qualitatively easier to interpret, clearly
separating data clusters.[2][9]

Representing dimensions can improve performance on tasks such
as classification.[2] Indeed, the hallmark of dimensionality reduction
is to place semantically related examples near each other.[28]

If linear activations are used, or only a single sigmoid hidden layer,
then the optimal solution to an autoencoder is strongly related to
principal component analysis (PCA).[29][30] The weights of an
autoencoder with a single hidden layer of size (where is less
than the size of the input) span the same vector subspace as the one
spanned by the first principal components, and the output of the
autoencoder is an orthogonal projection onto this subspace. The
autoencoder weights are not equal to the principal components, and
are generally not orthogonal, yet the principal components may be
recovered from them using the singular value decomposition.[31]

However, the potential of autoencoders resides in their non-
linearity, allowing the model to learn more powerful generalizations
compared to PCA, and to reconstruct the input with significantly
lower information loss.[9]

Information retrieval benefits particularly from dimensionality reduction in that search can become more
efficient in certain kinds of low dimensional spaces. Autoencoders were indeed applied to semantic
hashing, proposed by Salakhutdinov and Hinton in 2007.[28] By training the algorithm to produce a low-
dimensional binary code, all database entries could be stored in a hash table mapping binary code vectors to
entries. This table would then support information retrieval by returning all entries with the same binary
code as the query, or slightly less similar entries by flipping some bits from the query encoding.

Another application for autoencoders is anomaly detection.[32] [33][34][35][36] By learning to replicate the
most salient features in the training data under some of the constraints described previously, the model is
encouraged to learn to precisely reproduce the most frequently observed characteristics. When facing
anomalies, the model should worsen its reconstruction performance. In most cases, only data with normal
instances are used to train the autoencoder; in others, the frequency of anomalies is small compared to the
observation set so that its contribution to the learned representation could be ignored. After training, the

Principal component analysis

Information retrieval

Anomaly detection

https://en.wikipedia.org/wiki/File:PCA_vs_Linear_Autoencoder.png
https://en.wikipedia.org/w/index.php?title=Fashion_MNIST_dataset&action=edit&redlink=1
https://en.wikipedia.org/wiki/File:Reconstruction_autoencoders_vs_PCA.png
https://en.wikipedia.org/w/index.php?title=Fashion_MNIST_dataset&action=edit&redlink=1
https://en.wikipedia.org/wiki/Restricted_Boltzmann_machine
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Singular_value_decomposition
https://en.wikipedia.org/wiki/Information_retrieval
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Russ_Salakhutdinov
https://en.wikipedia.org/wiki/Hash_table
https://en.wikipedia.org/wiki/Anomaly_detection

autoencoder will accurately reconstruct "normal" data, while failing to do so with unfamiliar anomalous
data.[34] Reconstruction error (the error between the original data and its low dimensional reconstruction) is
used as an anomaly score to detect anomalies.[34]

Recent literature has however shown that certain autoencoding models can, counterintuitively, be very
good at reconstructing anomalous examples and consequently not able to reliably perform anomaly
detection.[37][38]

The characteristics of autoencoders are useful in image processing.

One example can be found in lossy image compression, where autoencoders outperformed other
approaches and proved competitive against JPEG 2000.[39][40]

Another useful application of autoencoders in image preprocessing is image denoising.[41][42][43]

Autoencoders found use in more demanding contexts such as medical imaging where they have been used
for image denoising[44] as well as super-resolution.[45][46] In image-assisted diagnosis, experiments have
applied autoencoders for breast cancer detection[47] and for modelling the relation between the cognitive
decline of Alzheimer's disease and the latent features of an autoencoder trained with MRI.[48]

In 2019 molecules generated with variational autoencoders were validated experimentally in mice.[49][50]

Recently, a stacked autoencoder framework produced promising results in predicting popularity of social
media posts,[51] which is helpful for online advertising strategies.

Autoencoders have been applied to machine translation, which is usually referred to as neural machine
translation (NMT).[52][53] Unlike traditional autoencoders, the output does not match the input - it is in
another language. In NMT, texts are treated as sequences to be encoded into the learning procedure, while
on the decoder side sequences in the target language(s) are generated. Language-specific autoencoders
incorporate further linguistic features into the learning procedure, such as Chinese decomposition
features.[54] Machine translation is rarely still done with autoencoders, but rather transformer networks.

Representation learning
Sparse dictionary learning
Deep learning

Image processing

Drug discovery

Popularity prediction

Machine translation

See also

References

https://en.wikipedia.org/wiki/Image_compression
https://en.wikipedia.org/wiki/JPEG_2000
https://en.wikipedia.org/wiki/Image_denoising
https://en.wikipedia.org/wiki/Medical_imaging
https://en.wikipedia.org/wiki/Image_denoising
https://en.wikipedia.org/wiki/Super-resolution
https://en.wikipedia.org/wiki/Breast_cancer
https://en.wikipedia.org/wiki/Alzheimer%27s_disease
https://en.wikipedia.org/wiki/MRI
https://en.wikipedia.org/wiki/Machine_translation
https://en.wikipedia.org/wiki/Neural_machine_translation
https://en.wikipedia.org/wiki/Language
https://en.wikipedia.org/wiki/Linguistic
https://en.wikipedia.org/wiki/Transformer_(machine_learning_model)
https://en.wikipedia.org/wiki/Representation_learning
https://en.wikipedia.org/wiki/Sparse_dictionary_learning
https://en.wikipedia.org/wiki/Deep_learning

1. Kramer, Mark A. (1991). "Nonlinear principal component analysis using autoassociative
neural networks" (https://www.researchgate.net/profile/Abir_Alobaid/post/To_learn_a_proba
bility_density_function_by_using_neural_network_can_we_first_estimate_density_using_n
onparametric_methods_then_train_the_network/attachment/59d6450279197b80779a031e/
AS:451263696510979@1484601057779/download/NL+PCA+by+using+ANN.pdf) (PDF).
AIChE Journal. 37 (2): 233–243. doi:10.1002/aic.690370209 (https://doi.org/10.1002%2Faic.
690370209).

2. Goodfellow, Ian; Bengio, Yoshua; Courville, Aaron (2016). Deep Learning (http://www.deepl
earningbook.org). MIT Press. ISBN 978-0262035613.

3. Vincent, Pascal; Larochelle, Hugo (2010). "Stacked Denoising Autoencoders: Learning
Useful Representations in a Deep Network with a Local Denoising Criterion". Journal of
Machine Learning Research. 11: 3371–3408.

4. Welling, Max; Kingma, Diederik P. (2019). "An Introduction to Variational Autoencoders".
Foundations and Trends in Machine Learning. 12 (4): 307–392. arXiv:1906.02691 (https://ar
xiv.org/abs/1906.02691). Bibcode:2019arXiv190602691K (https://ui.adsabs.harvard.edu/ab
s/2019arXiv190602691K). doi:10.1561/2200000056 (https://doi.org/10.1561%2F220000005
6). S2CID 174802445 (https://api.semanticscholar.org/CorpusID:174802445).

5. Hinton GE, Krizhevsky A, Wang SD. Transforming auto-encoders. (http://www.cs.toronto.ed
u/~fritz/absps/transauto6.pdf) In International Conference on Artificial Neural Networks 2011
Jun 14 (pp. 44-51). Springer, Berlin, Heidelberg.

6. Géron, Aurélien (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow. Canada: O’Reilly Media, Inc. pp. 739–740.

7. Liou, Cheng-Yuan; Huang, Jau-Chi; Yang, Wen-Chie (2008). "Modeling word perception
using the Elman network" (http://ntur.lib.ntu.edu.tw//handle/246246/155195).
Neurocomputing. 71 (16–18): 3150. doi:10.1016/j.neucom.2008.04.030 (https://doi.org/10.10
16%2Fj.neucom.2008.04.030).

8. Liou, Cheng-Yuan; Cheng, Wei-Chen; Liou, Jiun-Wei; Liou, Daw-Ran (2014). "Autoencoder
for words". Neurocomputing. 139: 84–96. doi:10.1016/j.neucom.2013.09.055 (https://doi.org/
10.1016%2Fj.neucom.2013.09.055).

9. Hinton, G. E.; Salakhutdinov, R.R. (2006-07-28). "Reducing the Dimensionality of Data with
Neural Networks". Science. 313 (5786): 504–507. Bibcode:2006Sci...313..504H (https://ui.a
dsabs.harvard.edu/abs/2006Sci...313..504H). doi:10.1126/science.1127647 (https://doi.org/1
0.1126%2Fscience.1127647). PMID 16873662 (https://pubmed.ncbi.nlm.nih.gov/16873662).
S2CID 1658773 (https://api.semanticscholar.org/CorpusID:1658773).

10. Bengio, Y. (2009). "Learning Deep Architectures for AI" (http://www.iro.umontreal.ca/~lisa/poi
nteurs/TR1312.pdf) (PDF). Foundations and Trends in Machine Learning. 2 (8): 1795–7.
CiteSeerX 10.1.1.701.9550 (https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.701.
9550). doi:10.1561/2200000006 (https://doi.org/10.1561%2F2200000006). PMID 23946944
(https://pubmed.ncbi.nlm.nih.gov/23946944).

11. Japkowicz, Nathalie; Hanson, Stephen José; Gluck, Mark A. (2000-03-01). "Nonlinear
Autoassociation Is Not Equivalent to PCA" (https://doi.org/10.1162/089976600300015691).
Neural Computation. 12 (3): 531–545. doi:10.1162/089976600300015691 (https://doi.org/10.
1162%2F089976600300015691). ISSN 0899-7667 (https://www.worldcat.org/issn/0899-766
7). PMID 10769321 (https://pubmed.ncbi.nlm.nih.gov/10769321). S2CID 18490972 (https://a
pi.semanticscholar.org/CorpusID:18490972).

12. Schwenk, Holger; Bengio, Yoshua (1997). "Training Methods for Adaptive Boosting of
Neural Networks" (https://proceedings.neurips.cc/paper/1997/hash/9cb67ffb59554ab1dabb6
5bcb370ddd9-Abstract.html). Advances in Neural Information Processing Systems. MIT
Press. 10.

https://www.researchgate.net/profile/Abir_Alobaid/post/To_learn_a_probability_density_function_by_using_neural_network_can_we_first_estimate_density_using_nonparametric_methods_then_train_the_network/attachment/59d6450279197b80779a031e/AS:451263696510979@1484601057779/download/NL+PCA+by+using+ANN.pdf
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1002%2Faic.690370209
http://www.deeplearningbook.org/
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0262035613
https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/1906.02691
https://en.wikipedia.org/wiki/Bibcode_(identifier)
https://ui.adsabs.harvard.edu/abs/2019arXiv190602691K
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1561%2F2200000056
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:174802445
http://www.cs.toronto.edu/~fritz/absps/transauto6.pdf
http://ntur.lib.ntu.edu.tw//handle/246246/155195
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1016%2Fj.neucom.2008.04.030
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1016%2Fj.neucom.2013.09.055
https://en.wikipedia.org/wiki/Bibcode_(identifier)
https://ui.adsabs.harvard.edu/abs/2006Sci...313..504H
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1126%2Fscience.1127647
https://en.wikipedia.org/wiki/PMID_(identifier)
https://pubmed.ncbi.nlm.nih.gov/16873662
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:1658773
http://www.iro.umontreal.ca/~lisa/pointeurs/TR1312.pdf
https://en.wikipedia.org/wiki/CiteSeerX_(identifier)
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.701.9550
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1561%2F2200000006
https://en.wikipedia.org/wiki/PMID_(identifier)
https://pubmed.ncbi.nlm.nih.gov/23946944
https://doi.org/10.1162/089976600300015691
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1162%2F089976600300015691
https://en.wikipedia.org/wiki/ISSN_(identifier)
https://www.worldcat.org/issn/0899-7667
https://en.wikipedia.org/wiki/PMID_(identifier)
https://pubmed.ncbi.nlm.nih.gov/10769321
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:18490972
https://proceedings.neurips.cc/paper/1997/hash/9cb67ffb59554ab1dabb65bcb370ddd9-Abstract.html

13. Schmidhuber, Jürgen (January 2015). "Deep learning in neural networks: An overview".
Neural Networks. 61: 85–117. arXiv:1404.7828 (https://arxiv.org/abs/1404.7828).
doi:10.1016/j.neunet.2014.09.003 (https://doi.org/10.1016%2Fj.neunet.2014.09.003).
PMID 25462637 (https://pubmed.ncbi.nlm.nih.gov/25462637). S2CID 11715509 (https://api.s
emanticscholar.org/CorpusID:11715509).

14. Hinton, G. E., & Zemel, R. S. (1994). Autoencoders, minimum description length and
Helmholtz free energy. In Advances in neural information processing systems 6 (pp. 3-10).

15. Diederik P Kingma; Welling, Max (2013). "Auto-Encoding Variational Bayes".
arXiv:1312.6114 (https://arxiv.org/abs/1312.6114) [stat.ML (https://arxiv.org/archive/stat.ML)].

16. Generating Faces with Torch, Boesen A., Larsen L. and Sonderby S.K., 2015 torch.ch/blog
/2015/11/13/gan.html (http://torch.ch/blog/2015/11/13/gan.html)

17. Domingos, Pedro (2015). "4". The Master Algorithm: How the Quest for the Ultimate
Learning Machine Will Remake Our World. Basic Books. "Deeper into the Brain"
subsection. ISBN 978-046506192-1.

18. Frey, Brendan; Makhzani, Alireza (2013-12-19). "k-Sparse Autoencoders". arXiv:1312.5663
(https://arxiv.org/abs/1312.5663). Bibcode:2013arXiv1312.5663M (https://ui.adsabs.harvard.
edu/abs/2013arXiv1312.5663M).

19. Makhzani, Alireza; Frey, Brendan (2013). "K-Sparse Autoencoders". arXiv:1312.5663 (http
s://arxiv.org/abs/1312.5663) [cs.LG (https://arxiv.org/archive/cs.LG)].

20. Ng, A. (2011). Sparse autoencoder (https://web.stanford.edu/class/cs294a/sparseAutoencod
er_2011new.pdf). CS294A Lecture notes, 72(2011), 1-19.

21. Nair, Vinod; Hinton, Geoffrey E. (2009). "3D Object Recognition with Deep Belief Nets" (htt
p://dl.acm.org/citation.cfm?id=2984093.2984244). Proceedings of the 22Nd International
Conference on Neural Information Processing Systems. NIPS'09. USA: Curran Associates
Inc.: 1339–1347. ISBN 9781615679119.

22. Zeng, Nianyin; Zhang, Hong; Song, Baoye; Liu, Weibo; Li, Yurong; Dobaie, Abdullah M.
(2018-01-17). "Facial expression recognition via learning deep sparse autoencoders".
Neurocomputing. 273: 643–649. doi:10.1016/j.neucom.2017.08.043 (https://doi.org/10.101
6%2Fj.neucom.2017.08.043). ISSN 0925-2312 (https://www.worldcat.org/issn/0925-2312).

23. Hinton, Geoffrey E; Zemel, Richard (1993). "Autoencoders, Minimum Description Length
and Helmholtz Free Energy" (https://proceedings.neurips.cc/paper/1993/hash/9e3cfc48eccf
81a0d57663e129aef3cb-Abstract.html). Advances in Neural Information Processing
Systems. Morgan-Kaufmann. 6.

24. Abid, Abubakar; Balin, Muhammad Fatih; Zou, James (2019-01-27). "Concrete
Autoencoders for Differentiable Feature Selection and Reconstruction". arXiv:1901.09346 (h
ttps://arxiv.org/abs/1901.09346) [cs.LG (https://arxiv.org/archive/cs.LG)].

25. Zhou, Yingbo; Arpit, Devansh; Nwogu, Ifeoma; Govindaraju, Venu (2014). "Is Joint Training
Better for Deep Auto-Encoders?". arXiv:1405.1380 (https://arxiv.org/abs/1405.1380) [stat.ML
(https://arxiv.org/archive/stat.ML)].

26. R. Salakhutdinov and G. E. Hinton, “Deep boltzmann machines,” in AISTATS, 2009, pp.
448–455.

27. "Fashion MNIST" (https://github.com/zalandoresearch/fashion-mnist). GitHub. 2019-07-12.
28. Salakhutdinov, Ruslan; Hinton, Geoffrey (2009-07-01). "Semantic hashing" (https://doi.org/1

0.1016%2Fj.ijar.2008.11.006). International Journal of Approximate Reasoning. Special
Section on Graphical Models and Information Retrieval. 50 (7): 969–978.
doi:10.1016/j.ijar.2008.11.006 (https://doi.org/10.1016%2Fj.ijar.2008.11.006). ISSN 0888-
613X (https://www.worldcat.org/issn/0888-613X).

https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/1404.7828
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1016%2Fj.neunet.2014.09.003
https://en.wikipedia.org/wiki/PMID_(identifier)
https://pubmed.ncbi.nlm.nih.gov/25462637
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:11715509
https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/1312.6114
https://arxiv.org/archive/stat.ML
http://torch.ch/blog/2015/11/13/gan.html
https://en.wikipedia.org/wiki/Pedro_Domingos
https://en.wikipedia.org/wiki/The_Master_Algorithm
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-046506192-1
https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/1312.5663
https://en.wikipedia.org/wiki/Bibcode_(identifier)
https://ui.adsabs.harvard.edu/abs/2013arXiv1312.5663M
https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/1312.5663
https://arxiv.org/archive/cs.LG
https://web.stanford.edu/class/cs294a/sparseAutoencoder_2011new.pdf
http://dl.acm.org/citation.cfm?id=2984093.2984244
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9781615679119
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1016%2Fj.neucom.2017.08.043
https://en.wikipedia.org/wiki/ISSN_(identifier)
https://www.worldcat.org/issn/0925-2312
https://proceedings.neurips.cc/paper/1993/hash/9e3cfc48eccf81a0d57663e129aef3cb-Abstract.html
https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/1901.09346
https://arxiv.org/archive/cs.LG
https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/1405.1380
https://arxiv.org/archive/stat.ML
https://github.com/zalandoresearch/fashion-mnist
https://en.wikipedia.org/wiki/GitHub
https://doi.org/10.1016%2Fj.ijar.2008.11.006
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1016%2Fj.ijar.2008.11.006
https://en.wikipedia.org/wiki/ISSN_(identifier)
https://www.worldcat.org/issn/0888-613X

29. Bourlard, H.; Kamp, Y. (1988). "Auto-association by multilayer perceptrons and singular
value decomposition" (http://infoscience.epfl.ch/record/82601). Biological Cybernetics. 59
(4–5): 291–294. doi:10.1007/BF00332918 (https://doi.org/10.1007%2FBF00332918).
PMID 3196773 (https://pubmed.ncbi.nlm.nih.gov/3196773). S2CID 206775335 (https://api.se
manticscholar.org/CorpusID:206775335).

30. Chicco, Davide; Sadowski, Peter; Baldi, Pierre (2014). "Deep autoencoder neural networks
for gene ontology annotation predictions". Proceedings of the 5th ACM Conference on
Bioinformatics, Computational Biology, and Health Informatics - BCB '14 (http://dl.acm.org/cit
ation.cfm?id=2649442). p. 533. doi:10.1145/2649387.2649442 (https://doi.org/10.1145%2F2
649387.2649442). hdl:11311/964622 (https://hdl.handle.net/11311%2F964622).
ISBN 9781450328944. S2CID 207217210 (https://api.semanticscholar.org/CorpusID:20721
7210).

31. Plaut, E (2018). "From Principal Subspaces to Principal Components with Linear
Autoencoders". arXiv:1804.10253 (https://arxiv.org/abs/1804.10253) [stat.ML (https://arxiv.or
g/archive/stat.ML)].

32. Morales-Forero, A., & Bassetto, S. (2019, December). Case Study: A Semi-Supervised
Methodology for Anomaly Detection and Diagnosis. In 2019 IEEE International Conference
on Industrial Engineering and Engineering Management (IEEM) (p. 4) (pp. 1031-1037).
IEEE.

33. Sakurada, M., & Yairi, T. (2014, December). Anomaly detection using autoencoders with
nonlinear dimensionality reduction. In Proceedings of the MLSDA 2014 2nd Workshop on
Machine Learning for Sensory Data Analysis (p. 4). ACM.

34. An, J., & Cho, S. (2015). Variational autoencoder based anomaly detection using
reconstruction probability. Special Lecture on IE, 2, 1-18.

35. Zhou, C., & Paffenroth, R. C. (2017, August). Anomaly detection with robust deep
autoencoders. In Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (pp. 665-674). ACM.

36. Ribeiro, Manassés; Lazzaretti, André Eugênio; Lopes, Heitor Silvério (2018). "A study of
deep convolutional auto-encoders for anomaly detection in videos". Pattern Recognition
Letters. 105: 13–22. Bibcode:2018PaReL.105...13R (https://ui.adsabs.harvard.edu/abs/2018
PaReL.105...13R). doi:10.1016/j.patrec.2017.07.016 (https://doi.org/10.1016%2Fj.patrec.201
7.07.016).

37. Nalisnick, Eric; Matsukawa, Akihiro; Teh, Yee Whye; Gorur, Dilan; Lakshminarayanan, Balaji
(2019-02-24). "Do Deep Generative Models Know What They Don't Know?".
arXiv:1810.09136 (https://arxiv.org/abs/1810.09136) [stat.ML (https://arxiv.org/archive/stat.M
L)].

38. Xiao, Zhisheng; Yan, Qing; Amit, Yali (2020). "Likelihood Regret: An Out-of-Distribution
Detection Score For Variational Auto-encoder" (https://proceedings.neurips.cc/paper/2020/h
ash/eddea82ad2755b24c4e168c5fc2ebd40-Abstract.html). Advances in Neural Information
Processing Systems. 33. arXiv:2003.02977 (https://arxiv.org/abs/2003.02977).

39. Theis, Lucas; Shi, Wenzhe; Cunningham, Andrew; Huszár, Ferenc (2017). "Lossy Image
Compression with Compressive Autoencoders". arXiv:1703.00395 (https://arxiv.org/abs/170
3.00395) [stat.ML (https://arxiv.org/archive/stat.ML)].

40. Balle, J; Laparra, V; Simoncelli, EP (April 2017). "End-to-end optimized image
compression". International Conference on Learning Representations. arXiv:1611.01704 (htt
ps://arxiv.org/abs/1611.01704).

41. Cho, K. (2013, February). Simple sparsification improves sparse denoising autoencoders in
denoising highly corrupted images. In International Conference on Machine Learning (pp.
432-440).

http://infoscience.epfl.ch/record/82601
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1007%2FBF00332918
https://en.wikipedia.org/wiki/PMID_(identifier)
https://pubmed.ncbi.nlm.nih.gov/3196773
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:206775335
http://dl.acm.org/citation.cfm?id=2649442
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145%2F2649387.2649442
https://en.wikipedia.org/wiki/Hdl_(identifier)
https://hdl.handle.net/11311%2F964622
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9781450328944
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:207217210
https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/1804.10253
https://arxiv.org/archive/stat.ML
https://en.wikipedia.org/wiki/Bibcode_(identifier)
https://ui.adsabs.harvard.edu/abs/2018PaReL.105...13R
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1016%2Fj.patrec.2017.07.016
https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/1810.09136
https://arxiv.org/archive/stat.ML
https://proceedings.neurips.cc/paper/2020/hash/eddea82ad2755b24c4e168c5fc2ebd40-Abstract.html
https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/2003.02977
https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/1703.00395
https://arxiv.org/archive/stat.ML
https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/1611.01704

42. Cho, Kyunghyun (2013). "Boltzmann Machines and Denoising Autoencoders for Image
Denoising". arXiv:1301.3468 (https://arxiv.org/abs/1301.3468) [stat.ML (https://arxiv.org/archi
ve/stat.ML)].

43. Buades, A.; Coll, B.; Morel, J. M. (2005). "A Review of Image Denoising Algorithms, with a
New One" (https://hal.archives-ouvertes.fr/hal-00271141). Multiscale Modeling & Simulation.
4 (2): 490–530. doi:10.1137/040616024 (https://doi.org/10.1137%2F040616024).
S2CID 218466166 (https://api.semanticscholar.org/CorpusID:218466166).

44. Gondara, Lovedeep (December 2016). "Medical Image Denoising Using Convolutional
Denoising Autoencoders". 2016 IEEE 16th International Conference on Data Mining
Workshops (ICDMW). Barcelona, Spain: IEEE: 241–246. arXiv:1608.04667 (https://arxiv.org/
abs/1608.04667). Bibcode:2016arXiv160804667G (https://ui.adsabs.harvard.edu/abs/2016a
rXiv160804667G). doi:10.1109/ICDMW.2016.0041 (https://doi.org/10.1109%2FICDMW.201
6.0041). ISBN 9781509059102. S2CID 14354973 (https://api.semanticscholar.org/CorpusI
D:14354973).

45. Zeng, Kun; Yu, Jun; Wang, Ruxin; Li, Cuihua; Tao, Dacheng (January 2017). "Coupled Deep
Autoencoder for Single Image Super-Resolution". IEEE Transactions on Cybernetics. 47 (1):
27–37. doi:10.1109/TCYB.2015.2501373 (https://doi.org/10.1109%2FTCYB.2015.2501373).
ISSN 2168-2267 (https://www.worldcat.org/issn/2168-2267). PMID 26625442 (https://pubme
d.ncbi.nlm.nih.gov/26625442). S2CID 20787612 (https://api.semanticscholar.org/CorpusID:2
0787612).

46. Tzu-Hsi, Song; Sanchez, Victor; Hesham, EIDaly; Nasir M., Rajpoot (2017). "Hybrid deep
autoencoder with Curvature Gaussian for detection of various types of cells in bone marrow
trephine biopsy images". 2017 IEEE 14th International Symposium on Biomedical Imaging
(ISBI 2017): 1040–1043. doi:10.1109/ISBI.2017.7950694 (https://doi.org/10.1109%2FISBI.2
017.7950694). ISBN 978-1-5090-1172-8. S2CID 7433130 (https://api.semanticscholar.org/C
orpusID:7433130).

47. Xu, Jun; Xiang, Lei; Liu, Qingshan; Gilmore, Hannah; Wu, Jianzhong; Tang, Jinghai;
Madabhushi, Anant (January 2016). "Stacked Sparse Autoencoder (SSAE) for Nuclei
Detection on Breast Cancer Histopathology Images" (https://www.ncbi.nlm.nih.gov/pmc/articl
es/PMC4729702). IEEE Transactions on Medical Imaging. 35 (1): 119–130.
doi:10.1109/TMI.2015.2458702 (https://doi.org/10.1109%2FTMI.2015.2458702).
PMC 4729702 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4729702). PMID 26208307
(https://pubmed.ncbi.nlm.nih.gov/26208307).

48. Martinez-Murcia, Francisco J.; Ortiz, Andres; Gorriz, Juan M.; Ramirez, Javier; Castillo-
Barnes, Diego (2020). "Studying the Manifold Structure of Alzheimer's Disease: A Deep
Learning Approach Using Convolutional Autoencoders" (https://doi.org/10.1109%2FJBHI.20
19.2914970). IEEE Journal of Biomedical and Health Informatics. 24 (1): 17–26.
doi:10.1109/JBHI.2019.2914970 (https://doi.org/10.1109%2FJBHI.2019.2914970).
PMID 31217131 (https://pubmed.ncbi.nlm.nih.gov/31217131). S2CID 195187846 (https://ap
i.semanticscholar.org/CorpusID:195187846).

49. Zhavoronkov, Alex (2019). "Deep learning enables rapid identification of potent DDR1
kinase inhibitors". Nature Biotechnology. 37 (9): 1038–1040. doi:10.1038/s41587-019-0224-
x (https://doi.org/10.1038%2Fs41587-019-0224-x). PMID 31477924 (https://pubmed.ncbi.nl
m.nih.gov/31477924). S2CID 201716327 (https://api.semanticscholar.org/CorpusID:201716
327).

50. Gregory, Barber. "A Molecule Designed By AI Exhibits 'Druglike' Qualities" (https://www.wire
d.com/story/molecule-designed-ai-exhibits-druglike-qualities/). Wired.

https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/1301.3468
https://arxiv.org/archive/stat.ML
https://hal.archives-ouvertes.fr/hal-00271141
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1137%2F040616024
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:218466166
https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/1608.04667
https://en.wikipedia.org/wiki/Bibcode_(identifier)
https://ui.adsabs.harvard.edu/abs/2016arXiv160804667G
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2FICDMW.2016.0041
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9781509059102
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:14354973
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2FTCYB.2015.2501373
https://en.wikipedia.org/wiki/ISSN_(identifier)
https://www.worldcat.org/issn/2168-2267
https://en.wikipedia.org/wiki/PMID_(identifier)
https://pubmed.ncbi.nlm.nih.gov/26625442
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:20787612
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2FISBI.2017.7950694
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-1-5090-1172-8
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:7433130
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4729702
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2FTMI.2015.2458702
https://en.wikipedia.org/wiki/PMC_(identifier)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4729702
https://en.wikipedia.org/wiki/PMID_(identifier)
https://pubmed.ncbi.nlm.nih.gov/26208307
https://doi.org/10.1109%2FJBHI.2019.2914970
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2FJBHI.2019.2914970
https://en.wikipedia.org/wiki/PMID_(identifier)
https://pubmed.ncbi.nlm.nih.gov/31217131
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:195187846
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1038%2Fs41587-019-0224-x
https://en.wikipedia.org/wiki/PMID_(identifier)
https://pubmed.ncbi.nlm.nih.gov/31477924
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:201716327
https://www.wired.com/story/molecule-designed-ai-exhibits-druglike-qualities/

Retrieved from "https://en.wikipedia.org/w/index.php?title=Autoencoder&oldid=1102065250"

This page was last edited on 3 August 2022, at 06:23 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 3.0; additional terms may apply. By
using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the
Wikimedia Foundation, Inc., a non-profit organization.

51. De, Shaunak; Maity, Abhishek; Goel, Vritti; Shitole, Sanjay; Bhattacharya, Avik (2017).
"Predicting the popularity of instagram posts for a lifestyle magazine using deep learning".
2017 2nd IEEE International Conference on Communication Systems, Computing and IT
Applications (CSCITA). pp. 174–177. doi:10.1109/CSCITA.2017.8066548 (https://doi.org/10.
1109%2FCSCITA.2017.8066548). ISBN 978-1-5090-4381-1. S2CID 35350962 (https://api.s
emanticscholar.org/CorpusID:35350962).

52. Cho, Kyunghyun; Bart van Merrienboer; Bahdanau, Dzmitry; Bengio, Yoshua (2014). "On
the Properties of Neural Machine Translation: Encoder-Decoder Approaches".
arXiv:1409.1259 (https://arxiv.org/abs/1409.1259) [cs.CL (https://arxiv.org/archive/cs.CL)].

53. Sutskever, Ilya; Vinyals, Oriol; Le, Quoc V. (2014). "Sequence to Sequence Learning with
Neural Networks". arXiv:1409.3215 (https://arxiv.org/abs/1409.3215) [cs.CL (https://arxiv.org/
archive/cs.CL)].

54. Han, Lifeng; Kuang, Shaohui (2018). "Incorporating Chinese Radicals into Neural Machine
Translation: Deeper Than Character Level". arXiv:1805.01565 (https://arxiv.org/abs/1805.01
565) [cs.CL (https://arxiv.org/archive/cs.CL)].

https://en.wikipedia.org/w/index.php?title=Autoencoder&oldid=1102065250
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://foundation.wikimedia.org/wiki/Terms_of_Use
https://foundation.wikimedia.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2FCSCITA.2017.8066548
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-1-5090-4381-1
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:35350962
https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/1409.1259
https://arxiv.org/archive/cs.CL
https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/1409.3215
https://arxiv.org/archive/cs.CL
https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/1805.01565
https://arxiv.org/archive/cs.CL

