
The 2006 NASA ST5 spacecraft
antenna. This complicated shape
was found by an evolutionary
computer design program to create
the best radiation pattern. It is known
as an evolved antenna.

Genetic algorithm

In computer science and operations research, a genetic algorithm
(GA) is a metaheuristic inspired by the process of natural selection
that belongs to the larger class of evolutionary algorithms (EA).
Genetic algorithms are commonly used to generate high-quality
solutions to optimization and search problems by relying on
biologically inspired operators such as mutation, crossover and
selection.[1] Some examples of GA applications include optimizing
decision trees for better performance, solving sudoku puzzles,[2]
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In a genetic algorithm, a population of candidate solutions (called individuals, creatures, organisms, or
phenotypes) to an optimization problem is evolved toward better solutions. Each candidate solution has a
set of properties (its chromosomes or genotype) which can be mutated and altered; traditionally, solutions
are represented in binary as strings of 0s and 1s, but other encodings are also possible.[3]

The evolution usually starts from a population of randomly generated individuals, and is an iterative
process, with the population in each iteration called a generation. In each generation, the fitness of every
individual in the population is evaluated; the fitness is usually the value of the objective function in the
optimization problem being solved. The more fit individuals are stochastically selected from the current
population, and each individual's genome is modified (recombined and possibly randomly mutated) to form
a new generation. The new generation of candidate solutions is then used in the next iteration of the
algorithm. Commonly, the algorithm terminates when either a maximum number of generations has been
produced, or a satisfactory fitness level has been reached for the population.

A typical genetic algorithm requires:

1. a genetic representation of the solution domain,
2. a fitness function to evaluate the solution domain.

A standard representation of each candidate solution is as an array of bits (also called bit set or bit string).[3]

Arrays of other types and structures can be used in essentially the same way. The main property that makes
these genetic representations convenient is that their parts are easily aligned due to their fixed size, which
facilitates simple crossover operations. Variable length representations may also be used, but crossover
implementation is more complex in this case. Tree-like representations are explored in genetic programming
and graph-form representations are explored in evolutionary programming; a mix of both linear
chromosomes and trees is explored in gene expression programming.

Once the genetic representation and the fitness function are defined, a GA proceeds to initialize a
population of solutions and then to improve it through repetitive application of the mutation, crossover,
inversion and selection operators.

The population size depends on the nature of the problem, but typically contains several hundreds or
thousands of possible solutions. Often, the initial population is generated randomly, allowing the entire
range of possible solutions (the search space). Occasionally, the solutions may be "seeded" in areas where
optimal solutions are likely to be found.
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During each successive generation, a portion of the existing population is selected to breed a new
generation. Individual solutions are selected through a fitness-based process, where fitter solutions (as
measured by a fitness function) are typically more likely to be selected. Certain selection methods rate the
fitness of each solution and preferentially select the best solutions. Other methods rate only a random
sample of the population, as the former process may be very time-consuming.

The fitness function is defined over the genetic representation and measures the quality of the represented
solution. The fitness function is always problem dependent. For instance, in the knapsack problem one
wants to maximize the total value of objects that can be put in a knapsack of some fixed capacity. A
representation of a solution might be an array of bits, where each bit represents a different object, and the
value of the bit (0 or 1) represents whether or not the object is in the knapsack. Not every such
representation is valid, as the size of objects may exceed the capacity of the knapsack. The fitness of the
solution is the sum of values of all objects in the knapsack if the representation is valid, or 0 otherwise.

In some problems, it is hard or even impossible to define the fitness expression; in these cases, a simulation
may be used to determine the fitness function value of a phenotype (e.g. computational fluid dynamics is
used to determine the air resistance of a vehicle whose shape is encoded as the phenotype), or even
interactive genetic algorithms are used.

The next step is to generate a second generation population of solutions from those selected, through a
combination of genetic operators: crossover (also called recombination), and mutation.

For each new solution to be produced, a pair of "parent" solutions is selected for breeding from the pool
selected previously. By producing a "child" solution using the above methods of crossover and mutation, a
new solution is created which typically shares many of the characteristics of its "parents". New parents are
selected for each new child, and the process continues until a new population of solutions of appropriate
size is generated. Although reproduction methods that are based on the use of two parents are more
"biology inspired", some research[4][5] suggests that more than two "parents" generate higher quality
chromosomes.

These processes ultimately result in the next generation population of chromosomes that is different from
the initial generation. Generally, the average fitness will have increased by this procedure for the
population, since only the best organisms from the first generation are selected for breeding, along with a
small proportion of less fit solutions. These less fit solutions ensure genetic diversity within the genetic pool
of the parents and therefore ensure the genetic diversity of the subsequent generation of children.

Opinion is divided over the importance of crossover versus mutation. There are many references in Fogel
(2006) that support the importance of mutation-based search.

Although crossover and mutation are known as the main genetic operators, it is possible to use other
operators such as regrouping, colonization-extinction, or migration in genetic algorithms.

It is worth tuning parameters such as the mutation probability, crossover probability and population size to
find reasonable settings for the problem class being worked on. A very small mutation rate may lead to
genetic drift (which is non-ergodic in nature). A recombination rate that is too high may lead to premature
convergence of the genetic algorithm. A mutation rate that is too high may lead to loss of good solutions,
unless elitist selection is employed. An adequate population size ensures sufficient genetic diversity for the
problem at hand, but can lead to a waste of computational resources if set to a value larger than required.
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In addition to the main operators above, other heuristics may be employed to make the calculation faster or
more robust. The speciation heuristic penalizes crossover between candidate solutions that are too similar;
this encourages population diversity and helps prevent premature convergence to a less optimal
solution.[6][7]

This generational process is repeated until a termination condition has been reached. Common terminating
conditions are:

A solution is found that satisfies minimum criteria
Fixed number of generations reached
Allocated budget (computation time/money) reached
The highest ranking solution's fitness is reaching or has reached a plateau such that
successive iterations no longer produce better results
Manual inspection
Combinations of the above

Genetic algorithms are simple to implement, but their behavior is difficult to understand. In particular, it is
difficult to understand why these algorithms frequently succeed at generating solutions of high fitness when
applied to practical problems. The building block hypothesis (BBH) consists of:

1. A description of a heuristic that performs adaptation by identifying and recombining "building
blocks", i.e. low order, low defining-length schemata with above average fitness.

2. A hypothesis that a genetic algorithm performs adaptation by implicitly and efficiently
implementing this heuristic.

Goldberg describes the heuristic as follows:

"Short, low order, and highly fit schemata are sampled, recombined [crossed over], and
resampled to form strings of potentially higher fitness. In a way, by working with these
particular schemata [the building blocks], we have reduced the complexity of our problem;
instead of building high-performance strings by trying every conceivable combination, we
construct better and better strings from the best partial solutions of past samplings.

"Because highly fit schemata of low defining length and low order play such an important
role in the action of genetic algorithms, we have already given them a special name:
building blocks. Just as a child creates magnificent fortresses through the arrangement of
simple blocks of wood, so does a genetic algorithm seek near optimal performance
through the juxtaposition of short, low-order, high-performance schemata, or building
blocks."[8]

Despite the lack of consensus regarding the validity of the building-block hypothesis, it has been
consistently evaluated and used as reference throughout the years. Many estimation of distribution
algorithms, for example, have been proposed in an attempt to provide an environment in which the
hypothesis would hold.[9][10] Although good results have been reported for some classes of problems,
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skepticism concerning the generality and/or practicality of the building-block hypothesis as an explanation
for GAs efficiency still remains. Indeed, there is a reasonable amount of work that attempts to understand
its limitations from the perspective of estimation of distribution algorithms.[11][12][13]

There are limitations of the use of a genetic algorithm compared to alternative optimization algorithms:

Repeated fitness function evaluation for complex problems is often the most prohibitive and
limiting segment of artificial evolutionary algorithms. Finding the optimal solution to complex
high-dimensional, multimodal problems often requires very expensive fitness function
evaluations. In real world problems such as structural optimization problems, a single
function evaluation may require several hours to several days of complete simulation.
Typical optimization methods cannot deal with such types of problem. In this case, it may be
necessary to forgo an exact evaluation and use an approximated fitness that is
computationally efficient. It is apparent that amalgamation of approximate models may be
one of the most promising approaches to convincingly use GA to solve complex real life
problems.
Genetic algorithms do not scale well with complexity. That is, where the number of elements
which are exposed to mutation is large there is often an exponential increase in search
space size. This makes it extremely difficult to use the technique on problems such as
designing an engine, a house or a plane. In order to make such problems tractable to
evolutionary search, they must be broken down into the simplest representation possible.
Hence we typically see evolutionary algorithms encoding designs for fan blades instead of
engines, building shapes instead of detailed construction plans, and airfoils instead of whole
aircraft designs. The second problem of complexity is the issue of how to protect parts that
have evolved to represent good solutions from further destructive mutation, particularly when
their fitness assessment requires them to combine well with other parts.
The "better" solution is only in comparison to other solutions. As a result, the stop criterion is
not clear in every problem.
In many problems, GAs have a tendency to converge towards local optima or even arbitrary
points rather than the global optimum of the problem. This means that it does not "know
how" to sacrifice short-term fitness to gain longer-term fitness. The likelihood of this
occurring depends on the shape of the fitness landscape: certain problems may provide an
easy ascent towards a global optimum, others may make it easier for the function to find the
local optima. This problem may be alleviated by using a different fitness function, increasing
the rate of mutation, or by using selection techniques that maintain a diverse population of
solutions,[14] although the No Free Lunch theorem[15] proves that there is no general
solution to this problem. A common technique to maintain diversity is to impose a "niche
penalty", wherein, any group of individuals of sufficient similarity (niche radius) have a
penalty added, which will reduce the representation of that group in subsequent
generations, permitting other (less similar) individuals to be maintained in the population.
This trick, however, may not be effective, depending on the landscape of the problem.
Another possible technique would be to simply replace part of the population with randomly
generated individuals, when most of the population is too similar to each other. Diversity is
important in genetic algorithms (and genetic programming) because crossing over a
homogeneous population does not yield new solutions. In evolution strategies and
evolutionary programming, diversity is not essential because of a greater reliance on
mutation.
Operating on dynamic data sets is difficult, as genomes begin to converge early on towards
solutions which may no longer be valid for later data. Several methods have been proposed
to remedy this by increasing genetic diversity somehow and preventing early convergence,
either by increasing the probability of mutation when the solution quality drops (called
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triggered hypermutation), or by occasionally introducing entirely new, randomly generated
elements into the gene pool (called random immigrants). Again, evolution strategies and
evolutionary programming can be implemented with a so-called "comma strategy" in which
parents are not maintained and new parents are selected only from offspring. This can be
more effective on dynamic problems.
GAs cannot effectively solve problems in which the only fitness measure is a single
right/wrong measure (like decision problems), as there is no way to converge on the solution
(no hill to climb). In these cases, a random search may find a solution as quickly as a GA.
However, if the situation allows the success/failure trial to be repeated giving (possibly)
different results, then the ratio of successes to failures provides a suitable fitness measure.
For specific optimization problems and problem instances, other optimization algorithms
may be more efficient than genetic algorithms in terms of speed of convergence. Alternative
and complementary algorithms include evolution strategies, evolutionary programming,
simulated annealing, Gaussian adaptation, hill climbing, and swarm intelligence (e.g.: ant
colony optimization, particle swarm optimization) and methods based on integer linear
programming. The suitability of genetic algorithms is dependent on the amount of
knowledge of the problem; well known problems often have better, more specialized
approaches.

The simplest algorithm represents each chromosome as a bit string. Typically, numeric parameters can be
represented by integers, though it is possible to use floating point representations. The floating point
representation is natural to evolution strategies and evolutionary programming. The notion of real-valued
genetic algorithms has been offered but is really a misnomer because it does not really represent the
building block theory that was proposed by John Henry Holland in the 1970s. This theory is not without
support though, based on theoretical and experimental results (see below). The basic algorithm performs
crossover and mutation at the bit level. Other variants treat the chromosome as a list of numbers which are
indexes into an instruction table, nodes in a linked list, hashes, objects, or any other imaginable data
structure. Crossover and mutation are performed so as to respect data element boundaries. For most data
types, specific variation operators can be designed. Different chromosomal data types seem to work better
or worse for different specific problem domains.

When bit-string representations of integers are used, Gray coding is often employed. In this way, small
changes in the integer can be readily affected through mutations or crossovers. This has been found to help
prevent premature convergence at so-called Hamming walls, in which too many simultaneous mutations (or
crossover events) must occur in order to change the chromosome to a better solution.

Other approaches involve using arrays of real-valued numbers instead of bit strings to represent
chromosomes. Results from the theory of schemata suggest that in general the smaller the alphabet, the
better the performance, but it was initially surprising to researchers that good results were obtained from
using real-valued chromosomes. This was explained as the set of real values in a finite population of
chromosomes as forming a virtual alphabet (when selection and recombination are dominant) with a much
lower cardinality than would be expected from a floating point representation.[16][17]

An expansion of the Genetic Algorithm accessible problem domain can be obtained through more complex
encoding of the solution pools by concatenating several types of heterogenously encoded genes into one
chromosome.[18] This particular approach allows for solving optimization problems that require vastly
disparate definition domains for the problem parameters. For instance, in problems of cascaded controller
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tuning, the internal loop controller structure can belong to a conventional regulator of three parameters,
whereas the external loop could implement a linguistic controller (such as a fuzzy system) which has an
inherently different description. This particular form of encoding requires a specialized crossover
mechanism that recombines the chromosome by section, and it is a useful tool for the modelling and
simulation of complex adaptive systems, especially evolution processes.

A practical variant of the general process of constructing a new population is to allow the best organism(s)
from the current generation to carry over to the next, unaltered. This strategy is known as elitist selection
and guarantees that the solution quality obtained by the GA will not decrease from one generation to the
next.[19]

Parallel implementations of genetic algorithms come in two flavors. Coarse-grained parallel genetic
algorithms assume a population on each of the computer nodes and migration of individuals among the
nodes. Fine-grained parallel genetic algorithms assume an individual on each processor node which acts
with neighboring individuals for selection and reproduction. Other variants, like genetic algorithms for
online optimization problems, introduce time-dependence or noise in the fitness function.

Genetic algorithms with adaptive parameters (adaptive genetic algorithms, AGAs) is another significant and
promising variant of genetic algorithms. The probabilities of crossover (pc) and mutation (pm) greatly
determine the degree of solution accuracy and the convergence speed that genetic algorithms can obtain.
Instead of using fixed values of pc and pm, AGAs utilize the population information in each generation and
adaptively adjust the pc and pm in order to maintain the population diversity as well as to sustain the
convergence capacity. In AGA (adaptive genetic algorithm),[20] the adjustment of pc and pm depends on
the fitness values of the solutions. In CAGA (clustering-based adaptive genetic algorithm),[21] through the
use of clustering analysis to judge the optimization states of the population, the adjustment of pc and pm
depends on these optimization states. It can be quite effective to combine GA with other optimization
methods. A GA tends to be quite good at finding generally good global solutions, but quite inefficient at
finding the last few mutations to find the absolute optimum. Other techniques (such as simple hill climbing)
are quite efficient at finding absolute optimum in a limited region. Alternating GA and hill climbing can
improve the efficiency of GA while overcoming the lack of robustness of hill climbing.

This means that the rules of genetic variation may have a different meaning in the natural case. For instance
– provided that steps are stored in consecutive order – crossing over may sum a number of steps from
maternal DNA adding a number of steps from paternal DNA and so on. This is like adding vectors that
more probably may follow a ridge in the phenotypic landscape. Thus, the efficiency of the process may be
increased by many orders of magnitude. Moreover, the inversion operator has the opportunity to place steps
in consecutive order or any other suitable order in favour of survival or efficiency.[22]

A variation, where the population as a whole is evolved rather than its individual members, is known as
gene pool recombination.

A number of variations have been developed to attempt to improve performance of GAs on problems with
a high degree of fitness epistasis, i.e. where the fitness of a solution consists of interacting subsets of its
variables. Such algorithms aim to learn (before exploiting) these beneficial phenotypic interactions. As
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such, they are aligned with the Building Block Hypothesis in adaptively reducing disruptive recombination.
Prominent examples of this approach include the mGA,[23] GEMGA[24] and LLGA.[25]

Problems which appear to be particularly appropriate for solution by genetic algorithms include timetabling
and scheduling problems, and many scheduling software packages are based on GAs. GAs have also been
applied to engineering.[26] Genetic algorithms are often applied as an approach to solve global optimization
problems.

As a general rule of thumb genetic algorithms might be useful in problem domains that have a complex
fitness landscape as mixing, i.e., mutation in combination with crossover, is designed to move the
population away from local optima that a traditional hill climbing algorithm might get stuck in. Observe that
commonly used crossover operators cannot change any uniform population. Mutation alone can provide
ergodicity of the overall genetic algorithm process (seen as a Markov chain).

Examples of problems solved by genetic algorithms include: mirrors designed to funnel sunlight to a solar
collector,[27] antennae designed to pick up radio signals in space,[28] walking methods for computer
figures,[29] optimal design of aerodynamic bodies in complex flowfields[30]

In his Algorithm Design Manual, Skiena advises against genetic algorithms for any task:

[I]t is quite unnatural to model applications in terms of genetic operators like mutation and
crossover on bit strings. The pseudobiology adds another level of complexity between you and
your problem. Second, genetic algorithms take a very long time on nontrivial problems. [...]
[T]he analogy with evolution—where significant progress require [sic] millions of years—can
be quite appropriate.

[...]

I have never encountered any problem where genetic algorithms seemed to me the right way to
attack it. Further, I have never seen any computational results reported using genetic algorithms
that have favorably impressed me. Stick to simulated annealing for your heuristic search
voodoo needs.

— Steven Skiena[31]: 267 

In 1950, Alan Turing proposed a "learning machine" which would parallel the principles of evolution.[32]

Computer simulation of evolution started as early as in 1954 with the work of Nils Aall Barricelli, who was
using the computer at the Institute for Advanced Study in Princeton, New Jersey.[33][34] His 1954
publication was not widely noticed. Starting in 1957,[35] the Australian quantitative geneticist Alex Fraser
published a series of papers on simulation of artificial selection of organisms with multiple loci controlling a
measurable trait. From these beginnings, computer simulation of evolution by biologists became more
common in the early 1960s, and the methods were described in books by Fraser and Burnell (1970)[36] and
Crosby (1973).[37] Fraser's simulations included all of the essential elements of modern genetic algorithms.
In addition, Hans-Joachim Bremermann published a series of papers in the 1960s that also adopted a
population of solution to optimization problems, undergoing recombination, mutation, and selection.
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Bremermann's research also included the elements of modern genetic algorithms.[38] Other noteworthy
early pioneers include Richard Friedberg, George Friedman, and Michael Conrad. Many early papers are
reprinted by Fogel (1998).[39]

Although Barricelli, in work he reported in 1963, had simulated the evolution of ability to play a simple
game,[40] artificial evolution only became a widely recognized optimization method as a result of the work
of Ingo Rechenberg and Hans-Paul Schwefel in the 1960s and early 1970s – Rechenberg's group was able
to solve complex engineering problems through evolution strategies.[41][42][43][44] Another approach was
the evolutionary programming technique of Lawrence J. Fogel, which was proposed for generating
artificial intelligence. Evolutionary programming originally used finite state machines for predicting
environments, and used variation and selection to optimize the predictive logics. Genetic algorithms in
particular became popular through the work of John Holland in the early 1970s, and particularly his book
Adaptation in Natural and Artificial Systems (1975). His work originated with studies of cellular automata,
conducted by Holland and his students at the University of Michigan. Holland introduced a formalized
framework for predicting the quality of the next generation, known as Holland's Schema Theorem.
Research in GAs remained largely theoretical until the mid-1980s, when The First International Conference
on Genetic Algorithms was held in Pittsburgh, Pennsylvania.

In the late 1980s, General Electric started selling the world's first genetic algorithm product, a mainframe-
based toolkit designed for industrial processes.[45] In 1989, Axcelis, Inc. released Evolver, the world's first
commercial GA product for desktop computers. The New York Times technology writer John Markoff
wrote[46] about Evolver in 1990, and it remained the only interactive commercial genetic algorithm until
1995.[47] Evolver was sold to Palisade in 1997, translated into several languages, and is currently in its 6th
version.[48] Since the 1990s, MATLAB has built in three derivative-free optimization heuristic algorithms
(simulated annealing, particle swarm optimization, genetic algorithm) and two direct search algorithms
(simplex search, pattern search).[49]

Genetic algorithms are a sub-field:

Evolutionary algorithms
Evolutionary computing
Metaheuristics
Stochastic optimization
Optimization

Evolutionary algorithms is a sub-field of evolutionary computing.
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Evolution strategies (ES, see Rechenberg, 1994) evolve individuals by means of mutation
and intermediate or discrete recombination. ES algorithms are designed particularly to solve
problems in the real-value domain.[50] They use self-adaptation to adjust control parameters
of the search. De-randomization of self-adaptation has led to the contemporary Covariance
Matrix Adaptation Evolution Strategy (CMA-ES).
Evolutionary programming (EP) involves populations of solutions with primarily mutation
and selection and arbitrary representations. They use self-adaptation to adjust parameters,
and can include other variation operations such as combining information from multiple
parents.
Estimation of Distribution Algorithm (EDA) substitutes traditional reproduction operators by
model-guided operators. Such models are learned from the population by employing
machine learning techniques and represented as Probabilistic Graphical Models, from
which new solutions can be sampled[51][52] or generated from guided-crossover.[53]

Genetic programming (GP) is a related technique popularized by John Koza in which
computer programs, rather than function parameters, are optimized. Genetic programming
often uses tree-based internal data structures to represent the computer programs for
adaptation instead of the list structures typical of genetic algorithms. There are many
variants of Genetic Programming, including Cartesian genetic programming, Gene
expression programming,[54] Grammatical Evolution, Linear genetic programming, Multi
expression programming etc.
Grouping genetic algorithm (GGA) is an evolution of the GA where the focus is shifted from
individual items, like in classical GAs, to groups or subset of items.[55] The idea behind this
GA evolution proposed by Emanuel Falkenauer is that solving some complex problems,
a.k.a. clustering or partitioning problems where a set of items must be split into disjoint group
of items in an optimal way, would better be achieved by making characteristics of the groups
of items equivalent to genes. These kind of problems include bin packing, line balancing,
clustering with respect to a distance measure, equal piles, etc., on which classic GAs proved
to perform poorly. Making genes equivalent to groups implies chromosomes that are in
general of variable length, and special genetic operators that manipulate whole groups of
items. For bin packing in particular, a GGA hybridized with the Dominance Criterion of
Martello and Toth, is arguably the best technique to date.
Interactive evolutionary algorithms are evolutionary algorithms that use human evaluation.
They are usually applied to domains where it is hard to design a computational fitness
function, for example, evolving images, music, artistic designs and forms to fit users'
aesthetic preference.

Swarm intelligence is a sub-field of evolutionary computing.

Ant colony optimization (ACO) uses many ants (or agents) equipped with a pheromone
model to traverse the solution space and find locally productive areas.
Although considered an Estimation of distribution algorithm,[56] Particle swarm optimization
(PSO) is a computational method for multi-parameter optimization which also uses
population-based approach. A population (swarm) of candidate solutions (particles) moves
in the search space, and the movement of the particles is influenced both by their own best
known position and swarm's global best known position. Like genetic algorithms, the PSO
method depends on information sharing among population members. In some problems the
PSO is often more computationally efficient than the GAs, especially in unconstrained
problems with continuous variables.[57]

Swarm intelligence
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Evolutionary computation is a sub-field of the metaheuristic methods.

Memetic algorithm (MA), often called hybrid genetic algorithm among others, is a population-
based method in which solutions are also subject to local improvement phases. The idea of
memetic algorithms comes from memes, which unlike genes, can adapt themselves. In
some problem areas they are shown to be more efficient than traditional evolutionary
algorithms.
Bacteriologic algorithms (BA) inspired by evolutionary ecology and, more particularly,
bacteriologic adaptation. Evolutionary ecology is the study of living organisms in the context
of their environment, with the aim of discovering how they adapt. Its basic concept is that in a
heterogeneous environment, there is not one individual that fits the whole environment. So,
one needs to reason at the population level. It is also believed BAs could be successfully
applied to complex positioning problems (antennas for cell phones, urban planning, and so
on) or data mining.[58]

Cultural algorithm (CA) consists of the population component almost identical to that of the
genetic algorithm and, in addition, a knowledge component called the belief space.
Differential evolution (DE) inspired by migration of superorganisms.[59]

Gaussian adaptation (normal or natural adaptation, abbreviated NA to avoid confusion with
GA) is intended for the maximisation of manufacturing yield of signal processing systems. It
may also be used for ordinary parametric optimisation. It relies on a certain theorem valid for
all regions of acceptability and all Gaussian distributions. The efficiency of NA relies on
information theory and a certain theorem of efficiency. Its efficiency is defined as information
divided by the work needed to get the information.[60] Because NA maximises mean fitness
rather than the fitness of the individual, the landscape is smoothed such that valleys
between peaks may disappear. Therefore it has a certain "ambition" to avoid local peaks in
the fitness landscape. NA is also good at climbing sharp crests by adaptation of the moment
matrix, because NA may maximise the disorder (average information) of the Gaussian
simultaneously keeping the mean fitness constant.

Metaheuristic methods broadly fall within stochastic optimisation methods.

Simulated annealing (SA) is a related global optimization technique that traverses the
search space by testing random mutations on an individual solution. A mutation that
increases fitness is always accepted. A mutation that lowers fitness is accepted
probabilistically based on the difference in fitness and a decreasing temperature parameter.
In SA parlance, one speaks of seeking the lowest energy instead of the maximum fitness.
SA can also be used within a standard GA algorithm by starting with a relatively high rate of
mutation and decreasing it over time along a given schedule.
Tabu search (TS) is similar to simulated annealing in that both traverse the solution space by
testing mutations of an individual solution. While simulated annealing generates only one
mutated solution, tabu search generates many mutated solutions and moves to the solution
with the lowest energy of those generated. In order to prevent cycling and encourage greater
movement through the solution space, a tabu list is maintained of partial or complete
solutions. It is forbidden to move to a solution that contains elements of the tabu list, which is
updated as the solution traverses the solution space.
Extremal optimization (EO) Unlike GAs, which work with a population of candidate solutions,
EO evolves a single solution and makes local modifications to the worst components. This
requires that a suitable representation be selected which permits individual solution

Other evolutionary computing algorithms
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components to be assigned a quality measure ("fitness"). The governing principle behind
this algorithm is that of emergent improvement through selectively removing low-quality
components and replacing them with a randomly selected component. This is decidedly at
odds with a GA that selects good solutions in an attempt to make better solutions.

The cross-entropy (CE) method generates candidate solutions via a parameterized
probability distribution. The parameters are updated via cross-entropy minimization, so as to
generate better samples in the next iteration.
Reactive search optimization (RSO) advocates the integration of sub-symbolic machine
learning techniques into search heuristics for solving complex optimization problems. The
word reactive hints at a ready response to events during the search through an internal
online feedback loop for the self-tuning of critical parameters. Methodologies of interest for
Reactive Search include machine learning and statistics, in particular reinforcement
learning, active or query learning, neural networks, and metaheuristics.

Genetic programming
List of genetic algorithm applications
Genetic algorithms in signal processing (a.k.a. particle filters)
Propagation of schema
Universal Darwinism
Metaheuristics
Learning classifier system
Rule-based machine learning
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"Essentials of Metaheuristics" (http://cs.gmu.edu/~sean/book/metaheuristics/), 2009 (225 p).
Free open text by Sean Luke.
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ok.pdf)
Genetic Algorithms in Python (https://mpatacchiola.github.io/blog/2017/03/14/dissecting-rein
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implementation.
Genetic Algorithms evolves to solve the prisoner's dilemma. (http://www-personal.umich.ed
u/~axe/research/Evolving.pdf) Written by Robert Axelrod.
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