
Evolutionary algorithm
In computational intelligence (CI), an evolutionary algorithm (EA) is a subset of evolutionary
computation,[1] a generic population-based metaheuristic optimization algorithm. An EA uses mechanisms
inspired by biological evolution, such as reproduction, mutation, recombination, and selection. Candidate
solutions to the optimization problem play the role of individuals in a population, and the fitness function
determines the quality of the solutions (see also loss function). Evolution of the population then takes place
after the repeated application of the above operators.

Evolutionary algorithms often perform well approximating solutions to all types of problems because they
ideally do not make any assumption about the underlying fitness landscape. Techniques from evolutionary
algorithms applied to the modeling of biological evolution are generally limited to explorations of
microevolutionary processes and planning models based upon cellular processes. In most real applications
of EAs, computational complexity is a prohibiting factor.[2] In fact, this computational complexity is due to
fitness function evaluation. Fitness approximation is one of the solutions to overcome this difficulty.
However, seemingly simple EA can solve often complex problems; therefore, there may be no direct link
between algorithm complexity and problem complexity.
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The following is an example of a generic single-objective genetic algorithm.

Step One: Generate the initial population of individuals randomly. (First generation)

Step Two: Repeat the following regenerational steps until termination:

1. Evaluate the fitness of each individual in the population (time limit, sufficient fitness
achieved, etc.)

2. Select the fittest individuals for reproduction. (Parents)
3. Breed new individuals through crossover and mutation operations to give birth to offspring.
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4. Replace the least-fit individuals of the population with new individuals.

Similar techniques differ in genetic representation and other implementation details, and the nature of the
particular applied problem.

Genetic algorithm – This is the most popular type of EA. One seeks the solution of a problem
in the form of strings of numbers (traditionally binary, although the best representations are
usually those that reflect something about the problem being solved),[2] by applying
operators such as recombination and mutation (sometimes one, sometimes both). This type
of EA is often used in optimization problems.
Genetic programming – Here the solutions are in the form of computer programs, and their
fitness is determined by their ability to solve a computational problem. There are many
variants of Genetic Programming, including Cartesian genetic programming, Gene
expression programming, Grammatical Evolution, Linear genetic programming, Multi
expression programming etc.
Evolutionary programming – Similar to genetic programming, but the structure of the
program is fixed and its numerical parameters are allowed to evolve.
Evolution strategy – Works with vectors of real numbers as representations of solutions, and
typically uses self-adaptive mutation rates.
Differential evolution – Based on vector differences and is therefore primarily suited for
numerical optimization problems.
Neuroevolution – Similar to genetic programming but the genomes represent artificial neural
networks by describing structure and connection weights. The genome encoding can be
direct or indirect.
Learning classifier system – Here the solution is a set of classifiers (rules or conditions). A
Michigan-LCS evolves at the level of individual classifiers whereas a Pittsburgh-LCS uses
populations of classifier-sets. Initially, classifiers were only binary, but now include real,
neural net, or S-expression types. Fitness is typically determined with either a strength or
accuracy based reinforcement learning or supervised learning approach.

A possible limitation of many evolutionary algorithms is their lack of a clear genotype–phenotype
distinction. In nature, the fertilized egg cell undergoes a complex process known as embryogenesis to
become a mature phenotype. This indirect encoding is believed to make the genetic search more robust (i.e.
reduce the probability of fatal mutations), and also may improve the evolvability of the organism.[3][4] Such
indirect (also known as generative or developmental) encodings also enable evolution to exploit the
regularity in the environment.[5] Recent work in the field of artificial embryogeny, or artificial
developmental systems, seeks to address these concerns. And gene expression programming successfully
explores a genotype–phenotype system, where the genotype consists of linear multigenic chromosomes of
fixed length and the phenotype consists of multiple expression trees or computer programs of different sizes
and shapes.[6]
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Ant colony optimization is based on the ideas of ant foraging by pheromone communication
to form paths.[7] Primarily suited for combinatorial optimization and graph problems.
The runner-root algorithm (RRA) is inspired by the function of runners and roots of plants in
nature.[8]

Artificial bee colony algorithm is based on the honey bee foraging behaviour. Primarily
proposed for numerical optimization and extended to solve combinatorial, constrained and
multi-objective optimization problems.
Bees algorithm is based on the foraging behaviour of honey bees. It has been applied in
many applications such as routing and scheduling.
Cuckoo search is inspired by the brooding parasitism of the cuckoo species. It also uses
Lévy flights, and thus it suits for global optimization problems.
Particle swarm optimization is based on the ideas of animal flocking behaviour.[7] Also
primarily suited for numerical optimization problems.

Hunting Search – A method inspired by the group hunting of some animals such as wolves
that organize their position to surround the prey, each of them relative to the position of the
others and especially that of their leader. It is a continuous optimization method[9] adapted
as a combinatorial optimization method.[10]

Adaptive dimensional search – Unlike nature-inspired metaheuristic techniques, an
adaptive dimensional search algorithm does not implement any metaphor as an underlying
principle. Rather it uses a simple performance-oriented method, based on the update of the
search dimensionality ratio (SDR) parameter at each iteration.[11]

Firefly algorithm is inspired by the behavior of fireflies, attracting each other by flashing light.
This is especially useful for multimodal optimization.
Harmony search – Based on the ideas of musicians' behavior in searching for better
harmonies. This algorithm is suitable for combinatorial optimization as well as parameter
optimization.
Gaussian adaptation – Based on information theory. Used for maximization of manufacturing
yield, mean fitness or average information. See for instance Entropy in thermodynamics and
information theory.
Memetic algorithm – A hybrid method, inspired by Richard Dawkins's notion of a meme, it
commonly takes the form of a population-based algorithm coupled with individual learning
procedures capable of performing local refinements. Emphasizes the exploitation of
problem-specific knowledge, and tries to orchestrate local and global search in a synergistic
way.

In 2020, Google stated that their AutoML-Zero can successfully rediscover classic algorithms such as the
concept of neural networks.[12]

The computer simulations Tierra and Avida attempt to model macroevolutionary dynamics.

[13] [14] [15]
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