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No free lunch theorem

In mathematical folklore, the "no free lunch" (NFL) theorem (sometimes pluralized) of David Wolpert
and William Macready appears in the 1997 "No Free Lunch Theorems for Optimization".[] Wolpert had
previously derived no free lunch theorems for machine learning (statistical inference).[z] The name alludes
to the saying "there ain't no such thing as a free lunch", that is, there are no easy shortcuts to success.

In 2005, Wolpert and Macready themselves indicated that the first theorem in their paper "state[s] that any
two optimization algorithms are equivalent when their performance is averaged across all possible
problems".[3]

The "no free lunch" (NFL) theorem is an easily stated and easily understood consequence of theorems
Wolpert and Macready actually prove. It is weaker than the proven theorems, and thus does not encapsulate
them. Various investigators have extended the work of Wolpert and Macready substantively. In terms of
how the NFL theorem is used in the context of the research area, the no free lunch in search and
optimization is a field that is dedicated for purposes of mathematically analyzing data for statistical identity,

particularly search!*! and optirnization.[S]

While some scholars argue that NFL conveys important insight, others argue that NFL is of little relevance
to machine learning research.[617]
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Example

Posit a toy universe that exists for exactly two days and on each day contains exactly one object, a square
or a triangle. The universe has exactly four possible histories:

1. (square, triangle): the universe contains a square on day 1, and a triangle on day 2
2. (square, square)

3. (triangle, triangle)

4. (triangle, square)

Any prediction strategy that succeeds for history #2, by predicting a square on day 2 if there is a square on
day 1, will fail on history #1, and vice versa. If all histories are equally likely, then any prediction strategy
will score the same, with the same accuracy rate of 0.5.8]
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Origin

Wolpert and Macready give two NFL theorems that are closely related to the folkloric theorem. In their
paper, they state:

We have dubbed the associated results NFL theorems because they demonstrate that if an
algorithm performs well on a certain class of problems then it necessarily pays for that with
degraded performance on the set of all remaining problems.>]

The first theorem hypothesizes objective functions that do not change while optimization is in progress, and
the second hypothesizes objective functions that may change.[®!

Theorem 1: For any algorithms a; and a,, at iteration step m

ZP(dgn | famaa'l) :ZP(dryn | f,m,ag),
f f

where d, denotes the ordered set of size m of the cost values y associated to input values z € X,
f:X —Y is the function being optimized and P(d%, | f,m,a) is the conditional probability of
obtaining a given sequence of cost values from algorithm @ run m times on function f.

The theorem can be equivalently formulated as follows:

Theorem 1: Given a finite set V' and a finite set S of real numbers, assume that f : V' — S'is
chosen at random according to uniform distribution on the set . V' of all possible functions from V'
to S. For the problem of optimizing f over the set V, then no algorithm performs better than blind
search.

Here, blind search means that at each step of the algorithm, the element v € V is chosen at random with
uniform probability distribution from the elements of V' that have not been chosen previously.

In essence, this says that when all functions f are equally likely, the probability of observing an arbitrary
sequence of m values in the course of optimization does not depend upon the algorithm. In the analytic
framework of Wolpert and Macready, performance is a function of the sequence of observed values (and
not e.g. of wall-clock time), so it follows easily that all algorithms have identically distributed performance
when objective functions are drawn uniformly at random, and also that all algorithms have identical mean
performance. But identical mean performance of all algorithms does not imply Theorem 1, and thus the
folkloric theorem is not equivalent to the original theorem.

Theorem 2 establishes a similar, but "more subtle", NFL result for time-varying objective functions.[>!

Motivation

The NFL theorems were explicitly not motivated by the question of what can be inferred (in the case of
NFL for machine learning) or found (in the case of NFL for search) when the "environment is uniform
random". Rather uniform randomness was used as a tool, to compare the number of environments for
which algorithm A outperforms algorithm B to the number of environments for which B outperforms A.
NFL tells us that (appropriately weighted) there are just as many environments in both of those sets.
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This is true for many definitions of what precisely an "environment" is. In particular, there are just as many
prior distributions (appropriately weighted) in which learning algorithm A beats B (on average) as vice
versa. This statement about sets of priors is what is most important about NFL, not the fact that any two
algorithms perform equally for the single, specific prior distribution that assigns equal probability to all
environments.

While the NFL is important to understand the fundamental limitation for a set of problems, it does not state
anything about each particular instance of a problem that can arise in practice. That is, the NFL states what
is contained in its mathematical statements and it is nothing more than that. For example, it applies to the
situations where the algorithm is fixed a priori and a worst-case problem for the fixed algorithm is chosen a
posteriori. Therefore, if we have a "good" problem in practice or if we can choose a "good" learning
algorithm for a given particular problem instance, then the NFL does not mention any limitation about this
particular problem instance. Though the NFL might seem contradictory to results from other papers
suggesting generalization of learning algorithms or search heuristics, it is important to understand the
difference between the exact mathematical logic of the NFL and its intuitive interpretation.[g]

Implications

To illustrate one of the counter-intuitive implications of NFL, suppose we fix two supervised learning
algorithms, C and D. We then sample a target function f to produce a set of input-output pairs, d. How
should we choose whether to train C or D on d, in order to make predictions for what output would be
associated with a point lying outside of d?

It is common in almost all of science and statistics to answer this question — to choose between C and D —
by running cross-validation on d with those two algorithms. In other words, to decide whether to generalize

from d with either C or D, we see which of them has better out-of-sample performance when tested within
d.

Since C and D are fixed, this use of cross-validation to choose between them is itself an algorithm, i.e., a
way of generalizing from an arbitrary dataset. Call this algorithm A. (Arguably, A is a simplified model of
the scientific method itself.)

We could also use anti-cross-validation to make our choice. In other words, we could choose between C
and D based on which has worse out-of-sample performance within d. Again, since C and D are fixed, this
use of anti-cross-validation is itself an algorithm. Call that algorithm B.

NFL tells us (loosely speaking) that B must beat A on just as many target functions (and associated datasets
d) as A beats B. In this very specific sense, the scientific method will lose to the "anti" scientific method

just as readily as it wins.[10]

NFL only applies if the target function is chosen from a uniform distribution of all possible functions. If this
is not the case, and certain target functions are more likely to be chosen than others, then A may perform
better than B overall. The contribution of NFL is that it tells us choosing an appropriate algorithm requires
making assumptions about the kinds of target functions the algorithm is being used for. With no
assumptions, no "meta-algorithm", such as the scientific method, performs better than random choice.

While some scholars argue that NFL conveys important insight, others argue that NFL is of little relevance
to machine learning research.l®ll7] If Occam's razor is correct, for example if sequences of lower
Kolmogorov complexity are more probable than sequences of higher complexity, then (as is observed in
real life) some algorithms, such as cross-validation, perform better on average on practical problems (when
compared with random choice or with anti—cross-validation).[l1]
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