
Gradient Descent in 2D

Illustration of gradient descent on a series of level sets

Gradient descent
In mathematics, gradient descent (also often called steepest descent) is a first-order iterative optimization algorithm for
finding a local minimum of a differentiable function. The idea is to take repeated steps in the opposite direction of the
gradient (or approximate gradient) of the function at the current point, because this is the direction of steepest descent.
Conversely, stepping in the direction of the gradient will lead to a local maximum of that function; the procedure is then
known as gradient ascent.

Gradient descent is generally attributed to Augustin-Louis Cauchy, who first suggested it in 1847.[1] Jacques Hadamard
independently proposed a similar method in 1907.[2][3] Its convergence properties for non-linear optimization problems
were first studied by Haskell Curry in 1944,[4] with the method becoming increasingly well-studied and used in the
following decades.[5][6]
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Gradient descent is based on the observation that if the multi-variable function  is defined and
differentiable in a neighborhood of a point , then  decreases fastest if one goes from  in the
direction of the negative gradient of  at . It follows that, if

for a small enough step size or learning rate , then . In other words, the
term  is subtracted from  because we want to move against the gradient, toward the local
minimum. With this observation in mind, one starts with a guess  for a local minimum of , and
considers the sequence  such that

We have a monotonic sequence

so, hopefully, the sequence  converges to the desired local minimum. Note that the value of the
step size  is allowed to change at every iteration. With certain assumptions on the function  (for
example,  convex and  Lipschitz) and particular choices of  (e.g., chosen either via a line
search that satisfies the Wolfe conditions, or the Barzilai–Borwein method[7][8] shown as following),

convergence to a local minimum can be guaranteed. When the function  is convex, all local minima are also global minima, so in this case gradient descent can
converge to the global solution.

This process is illustrated in the adjacent picture. Here,  is assumed to be defined on the plane, and that its graph has a bowl shape. The blue curves are the
contour lines, that is, the regions on which the value of  is constant. A red arrow originating at a point shows the direction of the negative gradient at that point.
Note that the (negative) gradient at a point is orthogonal to the contour line going through that point. We see that gradient descent leads us to the bottom of the
bowl, that is, to the point where the value of the function  is minimal.
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Fog in the mountains

The basic intuition behind gradient descent can be illustrated by a hypothetical scenario. A person is stuck in the mountains
and is trying to get down (i.e., trying to find the global minimum). There is heavy fog such that visibility is extremely low.
Therefore, the path down the mountain is not visible, so they must use local information to find the minimum. They can
use the method of gradient descent, which involves looking at the steepness of the hill at their current position, then
proceeding in the direction with the steepest descent (i.e., downhill). If they were trying to find the top of the mountain
(i.e., the maximum), then they would proceed in the direction of steepest ascent (i.e., uphill). Using this method, they
would eventually find their way down the mountain or possibly get stuck in some hole (i.e., local minimum or saddle
point), like a mountain lake. However, assume also that the steepness of the hill is not immediately obvious with simple
observation, but rather it requires a sophisticated instrument to measure, which the person happens to have at the moment.
It takes quite some time to measure the steepness of the hill with the instrument, thus they should minimize their use of the
instrument if they wanted to get down the mountain before sunset. The difficulty then is choosing the frequency at which
they should measure the steepness of the hill so not to go off track.

In this analogy, the person represents the algorithm, and the path taken down the mountain represents the sequence of parameter settings that the algorithm will
explore. The steepness of the hill represents the slope of the function at that point. The instrument used to measure steepness is differentiation. The direction they
choose to travel in aligns with the gradient of the function at that point. The amount of time they travel before taking another measurement is the step size.

Since using a step size  that is too small would slow convergence, and a  too large would lead to divergence, finding a good setting of  is an important practical
problem. Philip Wolfe also advocated for using "clever choices of the [descent] direction" in practice.[9] Whilst using a direction that deviates from the steepest
descent direction may seem counter-intuitive, the idea is that the smaller slope may be compensated for by being sustained over a much longer distance.

To reason about this mathematically, consider a direction  and step size  and consider the more general update:

.

Finding good settings of  and  requires some thought. First of all, we would like the update direction to point downhill. Mathematically, letting  denote the
angle between  and , this requires that  To say more, we need more information about the objective function that we are optimising. Under
the fairly weak assumption that  is continuously differentiable, we may prove that:[10]

 
 

  

This inequality implies that the amount by which we can be sure the function  is decreased depends on a trade off between the two terms in square brackets. The
first term in square brackets measures the angle between the descent direction and the negative gradient. The second term measures how quickly the gradient
changes along the descent direction.

In principle inequality (1) could be optimized over  and  to choose an optimal step size and direction. The problem is that evaluating the second term in
square brackets requires evaluating , and extra gradient evaluations are generally expensive and undesirable. Some ways around this problem
are:

Forgo the benefits of a clever descent direction by setting , and use line search to find a suitable step-size , such as one that
satisfies the Wolfe conditions. A more economic way of choosing learning rates is backtracking line search, a method that has both good
theoretical guarantees and experimental results. Note that one does not need to choose  to be the gradient; any direction that has positive
intersection product with the gradient will result in a reduction of the function value (for a sufficiently small value of ).

Assuming that  is twice-differentiable, use its Hessian  to estimate Then choose 
 and  by optimising inequality (1).

Assuming that  is Lipschitz, use its Lipschitz constant  to bound  Then choose  and 
by optimising inequality (1).

Build a custom model of  for . Then choose  and  by optimising inequality (1).

Under stronger assumptions on the function  such as convexity, more advanced techniques may be possible.

Usually by following one of the recipes above, convergence to a local minimum can be guaranteed. When the function  is convex, all local minima are also
global minima, so in this case gradient descent can converge to the global solution.

Gradient descent can be used to solve a system of linear equations

reformulated as a quadratic minimization problem. If the system matrix  is real symmetric and positive-definite, an objective function is defined as the quadratic
function, with minimization of

so that

For a general real matrix , linear least squares define

Choosing the step size and descent direction
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The steepest descent algorithm applied to the Wiener filter[11]

In traditional linear least squares for real  and  the Euclidean norm is used, in which case

The line search minimization, finding the locally optimal step size  on every iteration, can be
performed analytically for quadratic functions, and explicit formulas for the locally optimal  are
known.[5][12]

For example, for real symmetric and positive-definite matrix , a simple algorithm can be as
follows,[5]

To avoid multiplying by  twice per iteration, we note that  implies , which gives the traditional algorithm,[13]

The method is rarely used for solving linear equations, with the conjugate gradient method being one of the most popular alternatives. The number of gradient
descent iterations is commonly proportional to the spectral condition number  of the system matrix  (the ratio of the maximum to minimum eigenvalues of 

), while the convergence of conjugate gradient method is typically determined by a square root of the condition number, i.e., is much faster. Both methods
can benefit from preconditioning, where gradient descent may require less assumptions on the preconditioner.[13]

Gradient descent can also be used to solve a system of nonlinear equations. Below is an example that shows how to use the gradient descent to solve for three
unknown variables, x1, x2, and x3. This example shows one iteration of the gradient descent.

Consider the nonlinear system of equations

Let us introduce the associated function

where

One might now define the objective function

which we will attempt to minimize. As an initial guess, let us use

Solution of a non-linear system
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An animation showing the first 83 iterations of gradient
descent applied to this example. Surfaces are isosurfaces

of  at current guess , and arrows show the
direction of descent. Due to a small and constant step size,
the convergence is slow.

We know that

where the Jacobian matrix  is given by

We calculate:

Thus

and

Now, a suitable  must be found such that

This can be done with any of a variety of line search algorithms. One might also simply guess 
 which gives

Evaluating the objective function at this value, yields

The decrease from  to the next step's value of

is a sizable decrease in the objective function. Further steps would reduce its value further, until an approximate solution to the system was found.

Gradient descent works in spaces of any number of dimensions, even in infinite-dimensional ones. In the latter case, the search space is typically a function space,
and one calculates the Fréchet derivative of the functional to be minimized to determine the descent direction.[6]

That gradient descent works in any number of dimensions (finite number at least) can be seen as a consequence of the Cauchy-Schwarz inequality. That article
proves that the magnitude of the inner (dot) product of two vectors of any dimension is maximized when they are colinear. In the case of gradient descent, that
would be when the vector of independent variable adjustments is proportional to the gradient vector of partial derivatives.

The gradient descent can take many iterations to compute a local minimum with a required accuracy, if the curvature in different directions is very different for the
given function. For such functions, preconditioning, which changes the geometry of the space to shape the function level sets like concentric circles, cures the slow
convergence. Constructing and applying preconditioning can be computationally expensive, however.

The gradient descent can be combined with a line search, finding the locally optimal step size  on every iteration. Performing the line search can be time-
consuming. Conversely, using a fixed small  can yield poor convergence.

Methods based on Newton's method and inversion of the Hessian using conjugate gradient techniques can be better alternatives.[14][15] Generally, such methods
converge in fewer iterations, but the cost of each iteration is higher. An example is the BFGS method which consists in calculating on every step a matrix by which
the gradient vector is multiplied to go into a "better" direction, combined with a more sophisticated line search algorithm, to find the "best" value of  For
extremely large problems, where the computer-memory issues dominate, a limited-memory method such as L-BFGS should be used instead of BFGS or the
steepest descent.
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Gradient descent can be viewed as applying Euler's method for solving ordinary differential equations  to a gradient flow. In turn, this
equation may be derived as an optimal controller[16] for the control system  with  given in feedback form .

Gradient descent can converge to a local minimum and slow down in a neighborhood of a saddle point. Even for unconstrained quadratic minimization, gradient
descent develops a zig-zag pattern of subsequent iterates as iterations progress, resulting in slow convergence. Multiple modifications of gradient descent have
been proposed to address these deficiencies.

Yurii Nesterov has proposed[17] a simple modification that enables faster convergence for convex problems and has been since further generalized. For
unconstrained smooth problems the method is called the fast gradient method (FGM) or the accelerated gradient method (AGM). Specifically, if the differentiable
function  is convex and  is Lipschitz, and it is not assumed that  is strongly convex, then the error in the objective value generated at each step  by the

gradient descent method will be bounded by . Using the Nesterov acceleration technique, the error decreases at .[18] It is known that the rate 

 for the decrease of the cost function is optimal for first-order optimization methods. Nevertheless, there is the opportunity to improve the algorithm by
reducing the constant factor. The optimized gradient method (OGM)[19] reduces that constant by a factor of two and is an optimal first-order method for large-scale
problems.[20]

For constrained or non-smooth problems, Nesterov's FGM is called the fast proximal gradient method (FPGM), an acceleration of the proximal gradient method.

Trying to break the zig-zag pattern of gradient descent, the momentum or heavy ball method uses a momentum term in analogy to a heavy ball sliding on the
surface of values of the function being minimized,[5] or to mass movement in Newtonian dynamics through a viscous medium in a conservative force field.[21]

Gradient descent with momentum remembers the solution update at each iteration, and determines the next update as a linear combination of the gradient and the
previous update. For unconstrained quadratic minimization, a theoretical convergence rate bound of the heavy ball method is asymptotically the same as that for
the optimal conjugate gradient method.[5]

This technique is used in stochastic gradient descent and as an extension to the backpropagation algorithms used to train artificial neural networks.[22][23] In the
direction of updating, stochastic gradient descent adds a stochastic property. The weights can be used to calculate the derivatives.

Gradient descent can be extended to handle constraints by including a projection onto the set of constraints. This method is only feasible when the projection is
efficiently computable on a computer. Under suitable assumptions, this method converges. This method is a specific case of the forward-backward algorithm for
monotone inclusions (which includes convex programming and variational inequalities).[24]

Gradient descent is a special case of mirror descent using the squared Euclidean distance as the given Bregman divergence.[25]
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