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Mathematical logic

Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory,
proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the
mathematical properties of formal systems of logic such as their expressive or deductive power. However, it
can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of
mathematics.

Since its inception, mathematical logic has both contributed to and has been motivated by the study of
foundations of mathematics. This study began in the late 19th century with the development of axiomatic
frameworks for geometry, arithmetic, and analysis. In the early 20th century it was shaped by David
Hilbert's program to prove the consistency of foundational theories. Results of Kurt Gédel, Gerhard
Gentzen, and others provided partial resolution to the program, and clarified the issues involved in proving
consistency. Work in set theory showed that almost all ordinary mathematics can be formalized in terms of
sets, although there are some theorems that cannot be proven in common axiom systems for set theory.
Contemporary work in the foundations of mathematics often focuses on establishing which parts of
mathematics can be formalized in particular formal systems (as in reverse mathematics) rather than trying to
find theories in which all of mathematics can be developed.
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Subfields and scope

The Handbook of Mathematical Logic[l] in 1977 makes a rough division of contemporary mathematical
logic into four areas:

1. set theory

2. model theory

3. recursion theory, and

4. proof theory and constructive mathematics (considered as parts of a single area).

Additionally, sometimes the field of computational complexity theory is also included as part of
mathematical logic.[2! Each area has a distinct focus, although many techniques and results are shared
among multiple areas. The borderlines amongst these fields, and the lines separating mathematical logic and
other fields of mathematics, are not always sharp. Godel's incompleteness theorem marks not only a
milestone in recursion theory and proof theory, but has also led to Lob's theorem in modal logic. The
method of forcing is employed in set theory, model theory, and recursion theory, as well as in the study of
intuitionistic mathematics.

The mathematical field of category theory uses many formal axiomatic methods, and includes the study of
categorical logic, but category theory is not ordinarily considered a subfield of mathematical logic. Because
of its applicability in diverse fields of mathematics, mathematicians including Saunders Mac Lane have
proposed category theory as a foundational system for mathematics, independent of set theory. These
foundations use toposes, which resemble generalized models of set theory that may employ classical or
nonclassical logic.

History

Mathematical logic emerged in the mid-19th century as a subfield of mathematics, reflecting the confluence
of two traditions: formal philosophical logic and mathematics.>] "Mathematical logic, also called 'logistic’,
'symbolic logic', the 'algebra of logic', and, more recently, simply 'formal logic', is the set of logical theories
elaborated in the course of the last [nineteenth] century with the aid of an artificial notation and a rigorously
deductive method."*] Before this emergence, logic was studied with rhetoric, with calculationes,[S]
through the syllogism, and with philosophy. The first half of the 20th century saw an explosion of
fundamental results, accompanied by vigorous debate over the foundations of mathematics.
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Early history

Theories of logic were developed in many cultures in history, including China, India, Greece and the
Islamic world. Greek methods, particularly Aristotelian logic (or term logic) as found in the Organon,
found wide application and acceptance in Western science and mathematics for millennia.l! The Stoics,
especially Chrysippus, began the development of predicate logic. In 18th-century Europe, attempts to treat
the operations of formal logic in a symbolic or algebraic way had been made by philosophical
mathematicians including Leibniz and Lambert, but their labors remained isolated and little known.

19th century

In the middle of the nineteenth century, George Boole and then Augustus De Morgan presented systematic
mathematical treatments of logic. Their work, building on work by algebraists such as George Peacock,
extended the traditional Aristotelian doctrine of logic into a sufficient framework for the study of
foundations of mathematics.”] Charles Sanders Peirce later built upon the work of Boole to develop a
logical system for relations and quantifiers, which he published in several papers from 1870 to 1885.

Gottlob Frege presented an independent development of logic with quantifiers in his Begriffsschrift,
published in 1879, a work generally considered as marking a turning point in the history of logic. Frege's
work remained obscure, however, until Bertrand Russell began to promote it near the turn of the century.
The two-dimensional notation Frege developed was never widely adopted and is unused in contemporary
texts.

From 1890 to 1905, Ernst Schréder published Vorlesungen tiber die Algebra der Logik in three volumes.
This work summarized and extended the work of Boole, De Morgan, and Peirce, and was a comprehensive
reference to symbolic logic as it was understood at the end of the 19th century.

Foundational theories

Concerns that mathematics had not been built on a proper foundation led to the development of axiomatic
systems for fundamental areas of mathematics such as arithmetic, analysis, and geometry.

In logic, the term arithmetic refers to the theory of the natural numbers. Giuseppe Peanol®! published a set
of axioms for arithmetic that came to bear his name (Peano axioms), using a variation of the logical system
of Boole and Schréder but adding quantifiers. Peano was unaware of Frege's work at the time. Around the
same time Richard Dedekind showed that the natural numbers are uniquely characterized by their induction
properties. Dedekind proposed a different characterization, which lacked the formal logical character of
Peano's axioms.[®] Dedekind's work, however, proved theorems inaccessible in Peano's system, including
the uniqueness of the set of natural numbers (up to isomorphism) and the recursive definitions of addition
and multiplication from the successor function and mathematical induction.

In the mid-19th century, flaws in Euclid's axioms for geometry became known.['%l In addition to the
independence of the parallel postulate, established by Nikolai Lobachevsky in 1826,11) mathematicians
discovered that certain theorems taken for granted by Euclid were not in fact provable from his axioms.
Among these is the theorem that a line contains at least two points, or that circles of the same radius whose
centers are separated by that radius must intersect. Hilbert!!2] developed a complete set of axioms for
geometry, building on previous work by Pasch.['3] The success in axiomatizing geometry motivated
Hilbert to seek complete axiomatizations of other areas of mathematics, such as the natural numbers and the
real line. This would prove to be a major area of research in the first half of the 20th century.
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The 19th century saw great advances in the theory of real analysis, including theories of convergence of
functions and Fourier series. Mathematicians such as Karl Weierstrass began to construct functions that
stretched intuition, such as nowhere-differentiable continuous functions. Previous conceptions of a function
as a rule for computation, or a smooth graph, were no longer adequate. Weierstrass began to advocate the
arithmetization of analysis, which sought to axiomatize analysis using properties of the natural numbers.
The modern (g, §)-definition of limit and continuous functions was already developed by Bolzano in
1817,114] but remained relatively unknown. Cauchy in 1821 defined continuity in terms of infinitesimals
(see Cours d'Analyse, page 34). In 1858, Dedekind proposed a definition of the real numbers in terms of

Dedekind cuts of rational numbers, a definition still employed in contemporary texts.15]

Georg Cantor developed the fundamental concepts of infinite set theory. His early results developed the
theory of cardinality and proved that the reals and the natural numbers have different cardinalities.['®] Over
the next twenty years, Cantor developed a theory of transfinite numbers in a series of publications. In 1891,
he published a new proof of the uncountability of the real numbers that introduced the diagonal argument,
and used this method to prove Cantor's theorem that no set can have the same cardinality as its powerset.
Cantor believed that every set could be well-ordered, but was unable to produce a proof for this result,
leaving it as an open problem in 1895.[17]

20th century

In the early decades of the 20th century, the main areas of study were set theory and formal logic. The
discovery of paradoxes in informal set theory caused some to wonder whether mathematics itself is
inconsistent, and to look for proofs of consistency.

In 1900, Hilbert posed a famous list of 23 problems for the next century. The first two of these were to
resolve the continuum hypothesis and prove the consistency of elementary arithmetic, respectively; the
tenth was to produce a method that could decide whether a multivariate polynomial equation over the
integers has a solution. Subsequent work to resolve these problems shaped the direction of mathematical
logic, as did the effort to resolve Hilbert's Entscheidungsproblem, posed in 1928. This problem asked for a
procedure that would decide, given a formalized mathematical statement, whether the statement is true or
false.

Set theory and paradoxes

Emst Zermelo gave a proof that every set could be well-ordered, a result Georg Cantor had been unable to
obtain.['8! To achieve the proof, Zermelo introduced the axiom of choice, which drew heated debate and
research among mathematicians and the pioneers of set theory. The immediate criticism of the method led
Zermelo to publish a second exposition of his result, directly addressing criticisms of his proof.[lg] This
paper led to the general acceptance of the axiom of choice in the mathematics community.

Skepticism about the axiom of choice was reinforced by recently discovered paradoxes in naive set theory.
Cesare Burali-Fortil2%! was the first to state a paradox: the Burali-Forti paradox shows that the collection of
all ordinal numbers cannot form a set. Very soon thereafter, Bertrand Russell discovered Russell's paradox
in 1901, and Jules Richard discovered Richard's paradox.!21]

Zermelo provided the first set of axioms for set theory.[zz] These axioms, together with the additional axiom
of replacement proposed by Abraham Fraenkel, are now called Zermelo—Fraenkel set theory (ZF).
Zermelo's axioms incorporated the principle of limitation of size to avoid Russell's paradox.
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In 1910, the first volume of Principia Mathematica by Russell and Alfred North Whitehead was published.
This seminal work developed the theory of functions and cardinality in a completely formal framework of
type theory, which Russell and Whitehead developed in an effort to avoid the paradoxes. Principia
Mathematica is considered one of the most influential works of the 20th century, although the framework
of type theory did not prove popular as a foundational theory for mathematics.[23!

Fraenkel(24] proved that the axiom of choice cannot be proved from the axioms of Zermelo's set theory
with urelements. Later work by Paul Cohen?>) showed that the addition of urelements is not needed, and
the axiom of choice is unprovable in ZF. Cohen's proof developed the method of forcing, which is now an
important tool for establishing independence results in set theory.[26]

Symbolic logic

Leopold Lowenheim?7) and Thoralf Skolem!28! obtained the Léwenheim-Skolem theorem, which says
that first-order logic cannot control the cardinalities of infinite structures. Skolem realized that this theorem
would apply to first-order formalizations of set theory, and that it implies any such formalization has a
countable model. This counterintuitive fact became known as Skolem's paradox.

In his doctoral thesis, Kurt Goédel proved the completeness theorem, which establishes a correspondence
between syntax and semantics in first-order logic.l2%] Gédel used the completeness theorem to prove the
compactness theorem, demonstrating the finitary nature of first-order logical consequence. These results
helped establish first-order logic as the dominant logic used by mathematicians.

In 1931, Godel published On Formally Undecidable Propositions of Principia Mathematica and Related
Systems, which proved the incompleteness (in a different meaning of the word) of all sufficiently strong,
effective first-order theories. This result, known as Godel's incompleteness theorem, establishes severe
limitations on axiomatic foundations for mathematics, striking a strong blow to Hilbert's program. It showed
the impossibility of providing a consistency proof of arithmetic within any formal theory of arithmetic.
Hilbert, however, did not acknowledge the importance of the incompleteness theorem for some time.[2]

Godel's theorem shows that a consistency proof of any sufficiently strong, effective axiom system cannot
be obtained in the system itself, if the system is consistent, nor in any weaker system. This leaves open the
possibility of consistency proofs that cannot be formalized within the system they consider. Gentzen proved
the consistency of arithmetic using a finitistic system together with a principle of transfinite induction.!3%]
Gentzen's result introduced the ideas of cut elimination and proof-theoretic ordinals, which became key
tools in proof theory. Godel gave a different consistency proof, which reduces the consistency of classical
arithmetic to that of intuitionistic arithmetic in higher types.[31]

The first textbook on symbolic logic for the layman was written by Lewis Carroll, author of Alice in
Wonderland, in 1896.132]

Beginnings of the other branches

Alfred Tarski developed the basics of model theory.

Beginning in 1935, a group of prominent mathematicians collaborated under the pseudonym Nicolas
Bourbaki to publish Eléments de mathématique, a series of encyclopedic mathematics texts. These texts,
written in an austere and axiomatic style, emphasized rigorous presentation and set-theoretic foundations.
Terminology coined by these texts, such as the words bijection, injection, and surjection, and the set-
theoretic foundations the texts employed, were widely adopted throughout mathematics.
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The study of computability came to be known as recursion theory or computability theory, because early
formalizations by Godel and Kleene relied on recursive definitions of functions.l’] When these definitions
were shown equivalent to Turing's formalization involving Turing machines, it became clear that a new
concept — the computable function — had been discovered, and that this definition was robust enough to
admit numerous independent characterizations. In his work on the incompleteness theorems in 1931, Gddel
lacked a rigorous concept of an effective formal system; he immediately realized that the new definitions of
computability could be used for this purpose, allowing him to state the incompleteness theorems in
generality that could only be implied in the original paper.

Numerous results in recursion theory were obtained in the 1940s by Stephen Cole Kleene and Emil Leon
Post. Kleenel®3] introduced the concepts of relative computability, foreshadowed by Turing,[34] and the
arithmetical hierarchy. Kleene later generalized recursion theory to higher-order functionals. Kleene and
Georg Kreisel studied formal versions of intuitionistic mathematics, particularly in the context of proof
theory.

Formal logical systems

At its core, mathematical logic deals with mathematical concepts expressed using formal logical systems.
These systems, though they differ in many details, share the common property of considering only
expressions in a fixed formal language. The systems of propositional logic and first-order logic are the most
widely studied today, because of their applicability to foundations of mathematics and because of their
desirable proof-theoretic properties.[c] Stronger classical logics such as second-order logic or infinitary logic
are also studied, along with Non-classical logics such as intuitionistic logic.

First-order logic

First-order logic is a particular formal system of logic. Its syntax involves only finite expressions as well-
formed formulas, while its semantics are characterized by the limitation of all quantifiers to a fixed domain
of discourse.

Early results from formal logic established limitations of first-order logic. The Lowenheim—Skolem theorem
(1919) showed that if a set of sentences in a countable first-order language has an infinite model then it has
at least one model of each infinite cardinality. This shows that it is impossible for a set of first-order axioms
to characterize the natural numbers, the real numbers, or any other infinite structure up to isomorphism. As
the goal of early foundational studies was to produce axiomatic theories for all parts of mathematics, this
limitation was particularly stark.

Godel's completeness theorem established the equivalence between semantic and syntactic definitions of
logical consequence in first-order logic.[29] It shows that if a particular sentence is true in every model that
satisfies a particular set of axioms, then there must be a finite deduction of the sentence from the axioms.
The compactness theorem first appeared as a lemma in Godel's proof of the completeness theorem, and it
took many years before logicians grasped its significance and began to apply it routinely. It says that a set of
sentences has a model if and only if every finite subset has a model, or in other words that an inconsistent
set of formulas must have a finite inconsistent subset. The completeness and compactness theorems allow
for sophisticated analysis of logical consequence in first-order logic and the development of model theory,
and they are a key reason for the prominence of first-order logic in mathematics.

Godel's incompleteness theorems establish additional limits on first-order axiomatizations.!35! The first
incompleteness theorem states that for any consistent, effectively given (defined below) logical system
that is capable of interpreting arithmetic, there exists a statement that is true (in the sense that it holds for the
natural numbers) but not provable within that logical system (and which indeed may fail in some non-
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standard models of arithmetic which may be consistent with the logical system). For example, in every
logical system capable of expressing the Peano axioms, the Gddel sentence holds for the natural numbers
but cannot be proved.

Here a logical system is said to be effectively given if it is possible to decide, given any formula in the
language of the system, whether the formula is an axiom, and one which can express the Peano axioms is
called "sufficiently strong." When applied to first-order logic, the first incompleteness theorem implies that
any sufficiently strong, consistent, effective first-order theory has models that are not elementarily
equivalent, a stronger limitation than the one established by the Lowenheim—Skolem theorem. The second
incompleteness theorem states that no sufficiently strong, consistent, effective axiom system for arithmetic
can prove its own consistency, which has been interpreted to show that Hilbert's program cannot be
reached.

Other classical logics

Many logics besides first-order logic are studied. These include infinitary logics, which allow for formulas
to provide an infinite amount of information, and higher-order logics, which include a portion of set theory
directly in their semantics.

The most well studied infinitary logic is L, ,. In this logic, quantifiers may only be nested to finite depths,
as in first-order logic, but formulas may have finite or countably infinite conjunctions and disjunctions
within them. Thus, for example, it is possible to say that an object is a whole number using a formula of
L, ., such as

(z=0V(z=1)V(Ez=2)V---.

Higher-order logics allow for quantification not only of elements of the domain of discourse, but subsets of
the domain of discourse, sets of such subsets, and other objects of higher type. The semantics are defined so
that, rather than having a separate domain for each higher-type quantifier to range over, the quantifiers
instead range over all objects of the appropriate type. The logics studied before the development of first-
order logic, for example Frege's logic, had similar set-theoretic aspects. Although higher-order logics are
more expressive, allowing complete axiomatizations of structures such as the natural numbers, they do not
satisfy analogues of the completeness and compactness theorems from first-order logic, and are thus less
amenable to proof-theoretic analysis.

Another type of logics are fixed-point logics that allow inductive definitions, like one writes for primitive
recursive functions.

One can formally define an extension of first-order logic — a notion which encompasses all logics in this
section because they behave like first-order logic in certain fundamental ways, but does not encompass all
logics in general, e.g. it does not encompass intuitionistic, modal or fuzzy logic.

Lindstrom's theorem implies that the only extension of first-order logic satisfying both the compactness
theorem and the downward Lowenheim—Skolem theorem is first-order logic.

Nonclassical and modal logic

Modal logics include additional modal operators, such as an operator which states that a particular formula
is not only true, but necessarily true. Although modal logic is not often used to axiomatize mathematics, it
has been used to study the properties of first-order provability[36] and set-theoretic forcing.[37]
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Intuitionistic logic was developed by Heyting to study Brouwer's program of intuitionism, in which
Brouwer himself avoided formalization. Intuitionistic logic specifically does not include the law of the
excluded middle, which states that each sentence is either true or its negation is true. Kleene's work with the
proof theory of intuitionistic logic showed that constructive information can be recovered from intuitionistic
proofs. For example, any provably total function in intuitionistic arithmetic is computable; this is not true in
classical theories of arithmetic such as Peano arithmetic.

Algebraic logic

Algebraic logic uses the methods of abstract algebra to study the semantics of formal logics. A fundamental
example is the use of Boolean algebras to represent truth values in classical propositional logic, and the use
of Heyting algebras to represent truth values in intuitionistic propositional logic. Stronger logics, such as
first-order logic and higher-order logic, are studied using more complicated algebraic structures such as
cylindric algebras.

Set theory

Set theory is the study of sets, which are abstract collections of objects. Many of the basic notions, such as
ordinal and cardinal numbers, were developed informally by Cantor before formal axiomatizations of set
theory were developed. The first such axiomatization, due to Zermelo,22] was extended slightly to become
Zermelo—Fraenkel set theory (ZF), which is now the most widely used foundational theory for
mathematics.

Other formalizations of set theory have been proposed, including von Neumann—Bernays—Gddel set theory
(NBG), Morse—Kelley set theory (MK), and New Foundations (NF). Of these, ZF, NBG, and MK are
similar in describing a cumulative hierarchy of sets. New Foundations takes a different approach; it allows
objects such as the set of all sets at the cost of restrictions on its set-existence axioms. The system of
Kripke—Platek set theory is closely related to generalized recursion theory.

Two famous statements in set theory are the axiom of choice and the continuum hypothesis. The axiom of
choice, first stated by Zermelo,[w] was proved independent of ZF by Fraenkel,[24] but has come to be
widely accepted by mathematicians. It states that given a collection of nonempty sets there is a single set C
that contains exactly one element from each set in the collection. The set C is said to "choose" one element
from each set in the collection. While the ability to make such a choice is considered obvious by some,
since each set in the collection is nonempty, the lack of a general, concrete rule by which the choice can be
made renders the axiom nonconstructive. Stefan Banach and Alfred Tarski showed that the axiom of choice
can be used to decompose a solid ball into a finite number of pieces which can then be rearranged, with no
scaling, to make two solid balls of the original size.[38] This theorem, known as the Banach-Tarski
paradox, is one of many counterintuitive results of the axiom of choice.

The continuum hypothesis, first proposed as a conjecture by Cantor, was listed by David Hilbert as one of
his 23 problems in 1900. Godel showed that the continuum hypothesis cannot be disproven from the
axioms of Zermelo—Fraenkel set theory (with or without the axiom of choice), by developing the
constructible universe of set theory in which the continuum hypothesis must hold. In 1963, Paul Cohen
showed that the continuum hypothesis cannot be proven from the axioms of Zermelo—Fraenkel set
theory.[25] This independence result did not completely settle Hilbert's question, however, as it is possible
that new axioms for set theory could resolve the hypothesis. Recent work along these lines has been
conducted by W. Hugh Woodin, although its importance is not yet clear.[3°]
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Contemporary research in set theory includes the study of large cardinals and determinacy. Large cardinals
are cardinal numbers with particular properties so strong that the existence of such cardinals cannot be
proved in ZFC. The existence of the smallest large cardinal typically studied, an inaccessible cardinal,
already implies the consistency of ZFC. Despite the fact that large cardinals have extremely high
cardinality, their existence has many ramifications for the structure of the real line. Determinacy refers to
the possible existence of winning strategies for certain two-player games (the games are said to be
determined). The existence of these strategies implies structural properties of the real line and other Polish
spaces.

Model theory

Model theory studies the models of various formal theories. Here a theory is a set of formulas in a
particular formal logic and signature, while a model is a structure that gives a concrete interpretation of the
theory. Model theory is closely related to universal algebra and algebraic geometry, although the methods
of model theory focus more on logical considerations than those fields.

The set of all models of a particular theory is called an elementary class; classical model theory seeks to
determine the properties of models in a particular elementary class, or determine whether certain classes of
structures form elementary classes.

The method of quantifier elimination can be used to show that definable sets in particular theories cannot be
too complicated. Tarski established quantifier elimination for real-closed fields, a result which also shows
the theory of the field of real numbers is decidable.[*?] He also noted that his methods were equally
applicable to algebraically closed fields of arbitrary characteristic. A modern subfield developing from this
is concerned with o-minimal structures.

Morley's categoricity theorem, proved by Michael D. Morley,[41] states that if a first-order theory in a
countable language is categorical in some uncountable cardinality, i.e. all models of this cardinality are
isomorphic, then it is categorical in all uncountable cardinalities.

A trivial consequence of the continuum hypothesis is that a complete theory with less than continuum many
nonisomorphic countable models can have only countably many. Vaught's conjecture, named after Robert
Lawson Vaught, says that this is true even independently of the continuum hypothesis. Many special cases
of this conjecture have been established.

Recursion theory

Recursion theory, also called computability theory, studies the properties of computable functions and
the Turing degrees, which divide the uncomputable functions into sets that have the same level of
uncomputability. Recursion theory also includes the study of generalized computability and definability.
Recursion theory grew from the work of R6zsa Péter, Alonzo Church and Alan Turing in the 1930s, which
was greatly extended by Kleene and Post in the 1940s.142]

Classical recursion theory focuses on the computability of functions from the natural numbers to the natural
numbers. The fundamental results establish a robust, canonical class of computable functions with
numerous independent, equivalent characterizations using Turing machines, A calculus, and other systems.
More advanced results concern the structure of the Turing degrees and the lattice of recursively enumerable
sets.
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Generalized recursion theory extends the ideas of recursion theory to computations that are no longer
necessarily finite. It includes the study of computability in higher types as well as areas such as
hyperarithmetical theory and a-recursion theory.

Contemporary research in recursion theory includes the study of applications such as algorithmic
randomness, computable model theory, and reverse mathematics, as well as new results in pure recursion
theory.

Algorithmically unsolvable problems

An important subfield of recursion theory studies algorithmic unsolvability; a decision problem or function
problem is algorithmically unsolvable if there is no possible computable algorithm that returns the correct
answer for all legal inputs to the problem. The first results about unsolvability, obtained independently by
Church and Turing in 1936, showed that the Entscheidungsproblem is algorithmically unsolvable. Turing
proved this by establishing the unsolvability of the halting problem, a result with far-ranging implications in
both recursion theory and computer science.

There are many known examples of undecidable problems from ordinary mathematics. The word problem
for groups was proved algorithmically unsolvable by Pyotr Novikov in 1955 and independently by W.
Boone in 1959. The busy beaver problem, developed by Tibor Radé in 1962, is another well-known
example.

Hilbert's tenth problem asked for an algorithm to determine whether a multivariate polynomial equation
with integer coefficients has a solution in the integers. Partial progress was made by Julia Robinson, Martin
Davis and Hilary Putham. The algorithmic unsolvability of the problem was proved by Yuri Matiyasevich
in 1970.143!

Proof theory and constructive mathematics

Proof theory is the study of formal proofs in various logical deduction systems. These proofs are
represented as formal mathematical objects, facilitating their analysis by mathematical techniques. Several
deduction systems are commonly considered, including Hilbert-style deduction systems, systems of natural
deduction, and the sequent calculus developed by Gentzen.

The study of constructive mathematics, in the context of mathematical logic, includes the study of
systems in non-classical logic such as intuitionistic logic, as well as the study of predicative systems. An
early proponent of predicativism was Hermann Weyl, who showed it is possible to develop a large part of
real analysis using only predicative methods.[44]

Because proofs are entirely finitary, whereas truth in a structure is not, it is common for work in
constructive mathematics to emphasize provability. The relationship between provability in classical (or
nonconstructive) systems and provability in intuitionistic (or constructive, respectively) systems is of
particular interest. Results such as the Godel-Gentzen negative translation show that it is possible to embed
(or translate) classical logic into intuitionistic logic, allowing some properties about intuitionistic proofs to
be transferred back to classical proofs.

Recent developments in proof theory include the study of proof mining by Ulrich Kohlenbach and the
study of proof-theoretic ordinals by Michael Rathjen.

Applications
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"Mathematical logic has been successfully applied not only to mathematics and its foundations (G. Frege,
B. Russell, D. Hilbert, P. Bernays, H. Scholz, R. Carnap, S. Lesniewski, T. Skolem), but also to physics
(R. Carnap, A. Dittrich, B. Russell, C. E. Shannon, A. N. Whitehead, H. Reichenbach, P. Fevrier), to
biology (J. H. Woodger, A. Tarski), to psychology (F. B. Fitch, C. G. Hempel), to law and morals (K.
Menger, U. Klug, P. Oppenheim), to economics (J. Neumann, O. Morgenstern), to practical questions (E.
C. Berkeley, E. Stamm), and even to metaphysics (J. [Jan] Salamucha, H. Scholz, J. M. Bochenski). Its
applications to the history of logic have proven extremely fruitful (J. Lukasiewicz, H. Scholz, B. Mates, A.
Becker, E. Moody, J. Salamucha, K. Duerr, Z. Jordan, P. Boehner, J. M. Bochenski, S. [Stanislaw] T.
Schayer, D. Ingalls)."[45] "Applications have also been made to theology (F. Drewnowski, J. Salamucha, 1.
Thomas)."[45]

Connections with computer science

The study of computability theory in computer science is closely related to the study of computability in
mathematical logic. There is a difference of emphasis, however. Computer scientists often focus on
concrete programming languages and feasible computability, while researchers in mathematical logic often
focus on computability as a theoretical concept and on noncomputability.

The theory of semantics of programming languages is related to model theory, as is program verification (in
particular, model checking). The Curry—-Howard correspondence between proofs and programs relates to
proof theory, especially intuitionistic logic. Formal calculi such as the lambda calculus and combinatory
logic are now studied as idealized programming languages.

Computer science also contributes to mathematics by developing techniques for the automatic checking or
even finding of proofs, such as automated theorem proving and logic programming.

Descriptive complexity theory relates logics to computational complexity. The first significant result in this

area, Fagin's theorem (1974) established that NP is precisely the set of languages expressible by sentences
of existential second-order logic.

Foundations of mathematics

In the 19th century, mathematicians became aware of logical gaps and inconsistencies in their field. It was
shown that Euclid's axioms for geometry, which had been taught for centuries as an example of the
axiomatic method, were incomplete. The use of infinitesimals, and the very definition of function, came
into question in analysis, as pathological examples such as Weierstrass' nowhere-differentiable continuous
function were discovered.

Cantor's study of arbitrary infinite sets also drew criticism. Leopold Kronecker famously stated "God made
the integers; all else is the work of man," endorsing a return to the study of finite, concrete objects in
mathematics. Although Kronecker's argument was carried forward by constructivists in the 20th century,
the mathematical community as a whole rejected them. David Hilbert argued in favor of the study of the
infinite, saying "No one shall expel us from the Paradise that Cantor has created."

Mathematicians began to search for axiom systems that could be used to formalize large parts of
mathematics. In addition to removing ambiguity from previously naive terms such as function, it was hoped
that this axiomatization would allow for consistency proofs. In the 19th century, the main method of
proving the consistency of a set of axioms was to provide a model for it. Thus, for example, non-Euclidean
geometry can be proved consistent by defining point to mean a point on a fixed sphere and line to mean a
great circle on the sphere. The resulting structure, a model of elliptic geometry, satisfies the axioms of plane
geometry except the parallel postulate.
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With the development of formal logic, Hilbert asked whether it would be possible to prove that an axiom
system is consistent by analyzing the structure of possible proofs in the system, and showing through this
analysis that it is impossible to prove a contradiction. This idea led to the study of proof theory. Moreover,
Hilbert proposed that the analysis should be entirely concrete, using the term finitary to refer to the methods
he would allow but not precisely defining them. This project, known as Hilbert's program, was seriously
affected by Godel's incompleteness theorems, which show that the consistency of formal theories of
arithmetic cannot be established using methods formalizable in those theories. Gentzen showed that it is
possible to produce a proof of the consistency of arithmetic in a finitary system augmented with axioms of
transfinite induction, and the techniques he developed to do so were seminal in proof theory.

A second thread in the history of foundations of mathematics involves nonclassical logics and constructive
mathematics. The study of constructive mathematics includes many different programs with various
definitions of constructive. At the most accommodating end, proofs in ZF set theory that do not use the
axiom of choice are called constructive by many mathematicians. More limited versions of constructivism
limit themselves to natural numbers, number-theoretic functions, and sets of natural numbers (which can be
used to represent real numbers, facilitating the study of mathematical analysis). A common idea is that a
concrete means of computing the values of the function must be known before the function itself can be
said to exist.

In the early 20th century, Luitzen Egbertus Jan Brouwer founded intuitionism as a part of philosophy of
mathematics . This philosophy, poorly understood at first, stated that in order for a mathematical statement
to be true to a mathematician, that person must be able to intuit the statement, to not only believe its truth
but understand the reason for its truth. A consequence of this definition of truth was the rejection of the law
of the excluded middle, for there are statements that, according to Brouwer, could not be claimed to be true
while their negations also could not be claimed true. Brouwer's philosophy was influential, and the cause of
bitter disputes among prominent mathematicians. Later, Kleene and Kreisel would study formalized
versions of intuitionistic logic (Brouwer rejected formalization, and presented his work in unformalized
natural language). With the advent of the BHK interpretation and Kripke models, intuitionism became
easier to reconcile with classical mathematics.

See also

= Argument

= Informal logic

= Knowledge representation and reasoning
= Logic

= List of computability and complexity topics
= List of first-order theories

= List of logic symbols

= List of mathematical logic topics

= List of set theory topics

= Mereology

= Propositional calculus

= Well-formed formula

Notes

a. In the foreword to the 1934 first edition of "Grundlagen der Mathematik" (Hilbert & Bernays
1934), Bernays wrote the following, which is reminiscent of the famous note by Frege when
informed of Russell's paradox.
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"Die Ausfuihrung dieses Vorhabens hat eine wesentliche Verzégerung dadurch erfahren,
dal3 in einem Stadium, in dem die Darstellung schon ihrem Abschuld nahe war, durch das
Erscheinen der Arbeiten von Herbrand und von Gddel eine veranderte Situation im Gebiet
der Beweistheorie entstand, welche die Berlcksichtigung neuer Einsichten zur Aufgabe
machte. Dabei ist der Umfang des Buches angewachsen, so dal3 eine Teilung in zwei
Béande angezeigt erschien.”

Translation:

"Carrying out this plan [by Hilbert for an exposition on proof theory for mathematical logic]
has experienced an essential delay because, at the stage at which the exposition was
already near to its conclusion, there occurred an altered situation in the area of proof theory
due to the appearance of works by Herbrand and Godel, which necessitated the
consideration of new insights. Thus the scope of this book has grown, so that a division into
two volumes seemed advisable."

So certainly Hilbert was aware of the importance of Godel's work by 1934. The second
volume in 1939 included a form of Gentzen's consistency proof for arithmetic.

b. A detailed study of this terminology is given by Soare 1996.
c. Ferreirés 2001 surveys the rise of first-order logic over other formal logics in the early 20th

century.
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